Skip to content

xiaoh/sediFoam

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1bc891e · Dec 13, 2021
Jun 2, 2017
Jan 13, 2016
Dec 13, 2021
Feb 12, 2018
May 16, 2018
May 16, 2018
Apr 9, 2014
Apr 5, 2014
Aug 19, 2015
Oct 11, 2015
May 4, 2021
Aug 22, 2014

Repository files navigation

SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flows

Heng Xiao <hengxiao@vt.edu>

SediFoam is a hybrid CFD—​DEM solver for particle-laden flows based on two open-source codes: OpenFOAM, an object-oriented CFD platform by OpenCFD, and LAMMPS, a highly efficient molecular dynamics solver by Sandia National Laboratories. The algorithms used in this solver are published in Xiao and Sun [Xiao2011], Sun and Xiao [Sun2015a], and [Sun2015b]. The solver has ben rigorously and extensively validated [Gupta2015b]. A capability demonstration of the present solver in the context of sediment transport is published in Sun and Xiao [Sun2016]. Other application include sand dune migration [Sun2016b], cohesive particle setteling [Sun2017cohesive], sediment transport of irregular partilces [Sun2017irregular], particle plume in stratified flows [Wang2016].

More information can be found at the wiki pages of this site.

Development: Rui Sun (2013-2019), Heng Xiao (2008-2017), Jin Sun (University of Edinburgh, 2008-2010), Prashant Gupta (P&G)

Please send bug reports and comments to the online forum - other users may come to help. You can also contact: Heng Xiao (hengxiao@vt.edu) , but reply may be slow.

If you use sediFoam, you can cite the following paper:

  • R. Sun and H. Xiao. 'SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flows with emphasis on sediment transport'. Computers and Geosciences, 89, 207-219, 2016. DOI:10.1016/j.cageo.2016.01.011

References

  • [Sun2017cohesive] R. Sun, H. Xiao, H. Sun. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations. Advances in Water Resources. 111, 406-422, 2018. DOI: 10.1016/j.advwatres.2017.11.012

  • [Sun2017irregular] R. Sun, H. Xiao and H. Sun. Realistic representation of grain shapes in CFD-DEM simulations of sediment transport with a bonded-sphere approach. Advances in Water Resources. 107, 421-438, 2017. DOI: 10.1016/j.advwatres.2017.04.015

  • [Sun2015a] R. Sun and H. Xiao. 'Diffusion-Based Coarse Graining in Hybrid Continuum–Discrete Solvers: Theoretical Formulation and A Priori Tests'. International Journal of Multiphase Flow, 77, 142-157, 2015. DOI:10.1016/j.ijmultiphaseflow.2015.08.014. Also available at arxiv:1409.0001

  • [Sun2015b] R. Sun and H. Xiao. 'Diffusion-Based Coarse Graining in Hybrid Continuum–Discrete Solvers: Applications in CFD–DEM'. International Journal of Multiphase Flow, 72, 233-247, 2015. DOI:10.1016/j.ijmultiphaseflow.2015.02.014. Also available at arxiv:1409.0022

  • [Xiao2011] H. Xiao and J. Sun. 'Algorithms in a robust hybrid CFD–DEM solver for particle-laden flows'. Communications in Computational Physics, 9(2), 297-323, 2011. DOI: 10.4208/cicp.260509.230210a. Full text also available on ResearchGate.

  • [Sun2016b] R. Sun and H. Xiao. 'CFD-DEM simulations of current-induced dune formation and morphological evolution'. Advances in Water Resources, 2016. doi:10.1016/j.advwatres.2016.03.018. Also available at: arxiv:1510.07201

  • [Xu2018] S. Xu, R. Sun, Y. Cai and H. Sun. Study of sedimentation of non-cohesive particles via CFD-DEM simulations. Granular Matter, 2018. arxiv:1711.01524

  • [Wang2016] R.Q Wang, R. Sun and H. Xiao. Euler-Lagrangian Simulation of Multiphase Plumes in Stratified Flows. The 7th International Conference on Computational Methods. November, 2016, Berkeley, CA. Link

  • [Gupta2015a] Gupta, Prashant, J. Sun, and J. Y. Ooi. 'DEM-CFD simulation of a dense fluidized bed: Wall boundary and particle size effects'. Powder Technology, 2015. DOI:10.1016/j.powtec.2015.11.050

  • [Gupta2015b] Gupta, Prashant. 'Verification and validation of a DEM-CFD model and multiscale modelling of cohesive fluidization regimes'. Ph.D. Thesis, Edinburgh Univeristy, 2015. Download from UoE Archive