-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlowlight_test.py
62 lines (46 loc) · 1.42 KB
/
lowlight_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import model
import numpy as np
from torchvision import transforms
from PIL import Image
import glob
import time
def lowlight(image_path):
os.environ['CUDA_VISIBLE_DEVICES']='0'
data_lowlight = Image.open(image_path)
data_lowlight = np.asarray(data_lowlight)/255.0
data_lowlight = torch.from_numpy(data_lowlight).float()
data_lowlight = data_lowlight.permute(2,0,1)
data_lowlight = data_lowlight.cuda().unsqueeze(0)
DCE_net = model.enhance_net_nopool().cuda()
DCE_net.load_state_dict(torch.load('snapshots/Epoch299.pth'))
start = time.time()
enhanced_image,_ = DCE_net(data_lowlight)
end_time = (time.time() - start)
print("opt time",end_time," s")
image_path = image_path.replace('test_data','result')
result_path = image_path
if not os.path.exists(image_path.replace('/'+image_path.split("/")[-1],'')):
os.makedirs(image_path.replace('/'+image_path.split("/")[-1],''))
torchvision.utils.save_image(enhanced_image, result_path)
if __name__ == '__main__':
# test_images
with torch.no_grad():
filePath = 'data/test_data/'
file_list = os.listdir(filePath)
print(file_list)
for file_name in file_list:
test_list = glob.glob(filePath+file_name+"/*")
for image in test_list:
# image = image
print(image)
lowlight(image)