this is a modify version of Zero-DCE, it use the Residual Block to replace the depthwise separable convolution block.
- python3.8
- pytorch 2.0
- torchvision
- opencv
- cuda 11.8
- Pillow 9.5.0
You can also use conda enviroment to run code.
├── data
│ ├── test_data # testing data. You can make a new folder for your testing data, like LIME, DICM, and New.
│ │ ├── DICM
│ │ └── LIME
│ │ └── New
│ └── train_data
│ │ └── low
│ │ ├── low.zip # The compressed dataset.
│ │ └── low.z01
│ │ └── low.z02
│ └── result
│ └── guide.txt
├── lowlight_test.py # testing code
├── lowlight_train.py # training code
├── model.py # Zero-DEC-Res network
├── dataloader.py
├── Myloss.py
├── snapshots
│ ├── Epoch299.pth # A pre-trained snapshot (Epoch299.pth)
Before you run the test, please create the new subfolders in "result" folder which have the same name as the subfolders in "test_data"
python lowlight_test.py
The script will process the image from the subfolders in "test_data" folder, then write them to the subfolders(same name as subfolders in "test_floder") you created in "result"
- go to the "data/train_data/low" folder
- unzip the low.zip into the current folder
- run train script
python lowlight_train.py