Skip to content

yanniey/Coursera_Intro_to_Data_Science_with_Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Intro to Data Science in Python

University of Michigan, Professor Christopher Brooks, Coursera course

11/2016 - Completed on 04/12/2016

Summary: Despite the course name, this is an intermediate-level data science course with Python. Familiarity with Numpy and Pandas libraries is not required, but is highly recommended, as the course does get pretty intense really quickly (i.e. Week 2) To be honest, this is a solid course for someone who has a background with Panda and numpy libraries. However, there is a big knowledge gap between the videos and the assignments, so it's challenging for beginners.

Feedback:

My feeling while taking this course...

My feeling while taking this course...

04/12/2016: Finally finished this...was close to giving up on it SO MANY TIMES!

Week 4 Statistical Analysis in Python and Project

Binomial Distribution in numpy for coin flipping

np.random.binomial(1,0.5)

First term (1) is the number of times you want it to run, and second term (0.5) is the chance we get a zero

np.random.binomial(1000, 0.5)/1000

Flip coins 1000 times, and divide the result by 1000

Run 1000 simulations of flipping coins 20 times and getting a number >= 15.

x = np.random.binomial(20, .5, 10000)
print((x>=15).mean())

Output:

0.0219

Get the number of events given no. of simulation. "How many tornados will take place based on 100,000 simulations, given that the chance of a tornado is 0.01%?"

chance_of_tornado = 0.01/100
np.random.binomial(100000,chance of tornado)

Output:

8

"Assume the chance of tornado is 1%. How many tornados will take place (what is the chance of tornados taking place) two days in a row based on 1000000 simulations?"

chance_of_tornado = 0.01

tornado_events = np.random.binomial(1, chance_of_tornado, 1000000)
    
two_days_in_a_row = 0
for j in range(1,len(tornado_events)-1):
    if tornado_events[j]==1 and tornado_events[j-1]==1:
        two_days_in_a_row+=1

print('{} tornadoes back to back in {} years'.format(two_days_in_a_row, 1000000/365))

Output:

103 tornadoes back to back in 2739.72602739726 years

tornado_events[j]== 1 means the day when tornado took place.

Standard deviation

Draw 1000 samples of a normal distriubtion, with expected value of 0.75 and a standard deviation of 1. Result is ~ 68% of area.

distribution = np.random.normal(0.75,size=1000)

np.sqrt(np.sum((np.mean(distribution)-distribution)**2)/len(distribution))

The above code is equivalent to the np.std() function:

np.std(distribution)

Kirtosis (shape of tails) with stats module

Positive value = more chubby than a normal distribution Negative value = more flat than a normal distribution

import scipy.stats as stats
stats.kurtosis(distribution)

Output:

-0.21162400583818153

Skew with stats module

If skew = 0.5, then there's no skew (i.e. the distribution is symmetric)

stats.skew(distribution)

Output:

0.051147428570855365

Chi squared distribution (left-skewed)

As the degree of freedom increases, the plot moves from left to center

Degree of freedom = 2:

chi_squared_df2 = np.random.chisquare(2, size=10000)
stats.skew(chi_squared_df2)

Output:

1.9589902136938178

Degree of freemdom = 5:

chi_squared_df5 = np.random.chisquare(5, size=10000)
stats.skew(chi_squared_df5)

Output:

1.3010399138921354

Bimodal distribution (having 2 peaks)

Hypothesis Testing

Alternative Hypothesis vs. Null Hypothesis Significance level (alpha), alpha = 0.05 or 5%

t-test: compare the means of two different populations

stats.ttest_ind(): compare 2 difference samples to see if they have different means. In this case, we're using ttest_ind() to compare the average grade of assignment 1 between early users('early' dataframe) and late users('late' dataframe).

Output is a tuple with a test statistic and a p-value.

import scipy.stats as stats

early = df[df['assignment1_submission'] <= '2015-12-31']
late = df[df['assignment1_submission'] > '2015-12-31']

stats.ttest_ind(early['assignment1_grade'], late['assignment1_grade'])

Output:

Ttest_indResult(statistic=1.400549944897566, pvalue=0.16148283016060577)

If the p-value is >0.05(the significance value/alpha we decided previously), then we cannot reject the null hypothesis.

Do the same test on assignment 2:

stats.ttest_ind(early['assignment2_grade'], late['assignment2_grade'])

Output:

Ttest_indResult(statistic=1.3239868220912567, pvalue=0.18563824610067967)
In [ ]:

p-value is still >0.05, so we cannot reject the null hypothesis.

Week 3 Advanced Python Pandas

Finished Week 3's assignment

Finally finished Week 3's assignment.

11/27/2016 Update Finally finished this week's assignment! The first one took a long time. I had to relearn regular expression because of it. Learned a lot about dataframes through the practices, so I'm happy about the progress eventually, but Jesus,that was a lot of work...

Merging dataframes based on the same index. "NaN" is assigned when there's a missing value.

iloc() and loc()

iloc()for query based on location loc() for query based on label

Outer vs inner join

Outer Join

pd.merge(df1,df2,how='outer',left_index=True,right_index=True)

Inner Join

pd.merge(df1,df2,how='inner,left_index=True,right_index=True)

Left Join: keep all information from df1

pd.merge(df1,df2,how='left',left_index=True,right_index=True)

Right Join: keep all information from df2

pd.merge(df1,df2,how='right',left_index=True,right_index=True)

Join by Column names

pd.merge(df1,df2,how='left',left_on='Name',right_on='Name')

Chain indexing - not recommended

df.loc['Washtenaw']['Total Population']

Method chaining

(df.where(df['SUMLEV']==50)
    .dropna()
    .set_index(['STNAME','CTYNAME'])
    .rename(columns={'ESTIMATESBASE2010': 'Estimates Base 2010'}))

Drop rows where 'Quantity' is 0, and rename the column 'Weight' to 'Weight(oz.)'

df = df[df.Quantity !=0].rename({'Weight':'Weight(oz.)'})

Alternatively:

print(df.drop(df[df['Quantity'] == 0].index).rename(columns={'Weight': 'Weight (oz.)'}))

Apply() function which applies a function to all rows in a dataframe

To apply to all columns in the same row(i.e.1 = across), use axis= 1 To apply to all rows in the same column (i.e. 0 = down), use axis = 0

import numpy as np
def min_max(row):
    data = row[['POPESTIMATE2010',
                'POPESTIMATE2011',
                'POPESTIMATE2012',
                'POPESTIMATE2013',
                'POPESTIMATE2014',
                'POPESTIMATE2015']]
    return pd.Series({'min': np.min(data), 'max': np.max(data)})

df.apply(min_max, axis=1)

Adding the applied function to the existing dataframe (instead of creating a new one)

import numpy as np
def min_max(row):
    data = row[['POPESTIMATE2010',
                'POPESTIMATE2011',
                'POPESTIMATE2012',
                'POPESTIMATE2013',
                'POPESTIMATE2014',
                'POPESTIMATE2015']]
    row['max'] = np.max(data)
    row['min'] = np.min(data)
    return row
df.apply(min_max, axis=1)

Use apply() with lambda function: create a function with the max of each row

rows = ['POPESTIMATE2010',
        'POPESTIMATE2011',
        'POPESTIMATE2012',
        'POPESTIMATE2013',
        'POPESTIMATE2014',
        'POPESTIMATE2015']
df.apply(lambda x: np.max(x[rows]), axis=1)

Groupby()

you can use a function to be the criteria for group_by()

df = df.set_index('STNAME')

def fun(item):
    if item[0]<'M':
        return 0
    if item[0]<'Q':
        return 1
    return 2

for group, frame in df.groupby(fun):
    print('There are ' + str(len(frame)) + ' records in group ' + str(group) + ' for processing.')

Calculate the average/sum of a certain group with groupby() and agg()

df.groupby('STNAME').agg({'CENSUS2010POP': np.average})
print(df.groupby('Category').agg('sum'))

Use apply() with groupby()

def totalweight(df, w, q):
        return sum(df[w] * df[q])
        
print(df.groupby('Category').apply(totalweight, 'Weight (oz.)', 'Quantity'))

Scales

Use astype() to change the type of scales from one to another

create a list and use astype() to indicate the order with ordered = True. This enables > or < to be used on strings.

df = pd.DataFrame(['A+', 'A', 'A-', 'B+', 'B', 'B-', 'C+', 'C', 'C-', 'D+', 'D'],
                  index=['excellent', 'excellent', 'excellent', 'good', 'good', 'good', 'ok', 'ok', 'ok', 'poor', 'poor'])
df.rename(columns={0: 'Grades'}, inplace=True)

grades = df['Grades'].astype('category',
                             categories=['D', 'D+', 'C-', 'C', 'C+', 'B-', 'B', 'B+', 'A-', 'A', 'A+'],
                             ordered=True)
grades.head()

output is:

excellent    A+
excellent     A
excellent    A-
good         B+
good          B
Name: Grades, dtype: category
Categories (11, object): [D < D+ < C- < C ... B+ < A- < A < A+]

Use > or < functions on types, output:

excellent     True
excellent     True
excellent     True
good          True
good          True
good          True
ok            True
ok           False
ok           False
poor         False
poor         False
Name: Grades, dtype: bool

Change this series to categorical with ordering Low < Medium < High

s = pd.Series(['Low', 'Low', 'High', 'Medium', 'Low', 'High', 'Low'])

s.astype('category', categories=['Low', 'Medium', 'High'], ordered=True)

Use get_dummies() to convert boolean values into 0s and 1s

cut(): to cut data into bins (i.e. to divide them equally into 10 buckets)

df = pd.read_csv('census.csv')
df = df[df['SUMLEV']==50]
df = df.set_index('STNAME').groupby(level=0)['CENSUS2010POP'].agg({'avg': np.average})
pd.cut(df['avg'],10)

Cut a series into 3 equal-sized bins

s = pd.Series([168, 180, 174, 190, 170, 185, 179, 181, 175, 169, 182, 177, 180, 171])


pd.cut(s, 3)

# You can also add labels for the sizes [Small < Medium < Large].
pd.cut(s, 3, labels=['Small', 'Medium', 'Large'])

Use pivot_table() to create Pivot Tables

df = pd.read_csv('cars.csv')
df.pivot_table(values='(kW)', index='YEAR', columns='Make', aggfunc=np.mean)

Create a pivot table that shows mean price and mean ratings for every "Manufacturer"/"Bike Type" combination

print(pd.pivot_table(Bikes, index=['Manufacturer','Bike Type']))

import numpy as np
print(Bikes.pivot_table(values ='Price',index = 'Manufacturer',columns = 'Bike Type',aggfunc=np.average))

Date Functionality in Panda

  1. Timestamp

  2. DatetimeIndex (the index of 1)

  3. Period

  4. PeriodIndex (the index of 3)

  5. Timestamp, exchangeable to Python's datetime ⋅⋅⋅ ⋅⋅⋅pd.Timestamp('9/1/2016 10:05AM') ⋅⋅⋅

  6. Period

pd.Period('1/2016')
  1. DatetimeIndex and PeriodIndex DatetimeIndex
t1 = pd.Series(list('abc'), [pd.Timestamp('2016-09-01'), pd.Timestamp('2016-09-02'), pd.Timestamp('2016-09-03')])

type(t1.index)

Output:

pandas.tseries.index.DatetimeIndex

PeriodIndex

t2 = pd.Series(list('def'), [pd.Period('2016-09'), pd.Period('2016-10'), pd.Period('2016-11')])
type(t2.index)

Output:

pandas.tseries.period.PeriodIndex

Coverts datetimes to the same format with to_datetime()

d1 = ['2 June 2013', 'Aug 29, 2014', '2015-06-26', '7/12/16']
ts3 = pd.DataFrame(np.random.randint(10, 100, (4,2)), index=d1, columns=list('ab'))
ts3.index = pd.to_datetime(ts3.index)

use dayfirst = True to change the datetime into European format

pd.to_datetime('4.7.12', dayfirst=True)

Timedelta: show difference in times

pd.Timestamp('9/3/2016')-pd.Timestamp('9/1/2016')

Output:

Timedelta('2 days 00:00:00')

Calculate datetime with timedelta

pd.Timestamp('9/2/2016 8:10AM') + pd.Timedelta('12D 3H')

Output:

Timestamp('2016-09-14 11:10:00')

Date_range()

Create a range of dates for bi-weekly on Sundays, starting with a specific date

dates = pd.date_range('10-01-2016', periods=9, freq='2W-SUN')

weekday_name(): check what day of the week it is

df.index.weekday_name

diff(): find difference between each day's value

df.diff()

resample(): frequency conversion. example: find mean count for each month, will show the data as of month end. 'M' stands for month

df.resample('M').mean()

Find values from a specific year, month or a range of dates

df['2017']
df['2016-12']
df['2016-12':]
<!-- from 12/2016 onwards -->

asfreq(): change frequency from bi-weekly to weekly, and fill NaN value with last week's data point

df.asfreq('W', method='ffill')

matplotlib: visualising a timeseries

import matplotlib.pyplot as plt
%matplotlib inline

df.plot()

Week 2 Basic Data Processing with Pandas

Dataframe

import pandas as pd
purchase_1 = pd.Series({'Name': 'Chris',
                        'Item Purchased': 'Dog Food',
                        'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
                        'Item Purchased': 'Kitty Litter',
                        'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
                        'Item Purchased': 'Bird Seed',
                        'Cost': 5.00})
df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])
df.head()

df.T.loc --> T transforms data

iloc vs loc: iloc searches by index, loc searches by value

Avoid chaining as it generally create a copy of the data, instead of simply viewing it.

Deleting data with df.drop(). It creates a copy of the dataframe with the given rows removed.

df.drop("Store 1") 

Deleting data with del() function

del copy_df['Name']

apply 20% discount to cost

purchase_1 = pd.Series({'Name': 'Chris',
                        'Item Purchased': 'Dog Food',
                        'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
                        'Item Purchased': 'Kitty Litter',
                        'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
                        'Item Purchased': 'Bird Seed',
                        'Cost': 5.00})

df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])


df['Cost'] *= 0.8
print(df)

Panda's read_csv() function, making first column the index

df = pd.read_csv('olympics.csv', index_col=0, skiprows=1)

Change column names with rename() method

for col in df.columns:
    if col[:2]=='01':
        df.rename(columns={col:'Gold' + col[4:]}, inplace=True)
    if col[:2]=='02':
        df.rename(columns={col:'Silver' + col[4:]}, inplace=True)
    if col[:2]=='03':
        df.rename(columns={col:'Bronze' + col[4:]}, inplace=True)
    if col[:1]=='№':
        df.rename(columns={col:'#' + col[1:]}, inplace=True) 

df.head()

Boolean masking: applying a boolean (True or False) filter/mask to a dataframe/array with where() function

only_gold = df.where(df['Gold']>0)
only_gold.head()

Drop lines when there is no data with na() function

only_gold = only_gold.dropna()

Chaining boolean maskes

<!-- either  -->
len(df[(df['Gold'] > 0) | (df['Gold.1'] > 0)])
<!-- and -->
df[(df['Gold.1'] > 0) & (df['Gold'] == 0)]

Return all of names of people who spend more than $3.00

purchase_1 = pd.Series({'Name': 'Chris',
                        'Item Purchased': 'Dog Food',
                        'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
                        'Item Purchased': 'Kitty Litter',
                        'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
                        'Item Purchased': 'Bird Seed',
                        'Cost': 5.00})

df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])
df['Name'][df['Cost']>3]

Set_index() function

Reindex the purchase records Dataframe to be index hierarchically, first by store, then by person. Name these indexes "Location" and "Name". Then add a new entry to it with the value of:

Name: "Kevyn", Item Purchased: "Kitty Food", Cost: 3.00 Location:"Store 2".

purchase_1 = pd.Series({'Name': 'Chris',
                        'Item Purchased': 'Dog Food',
                        'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
                        'Item Purchased': 'Kitty Litter',
                        'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
                        'Item Purchased': 'Bird Seed',
                        'Cost': 5.00})

df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])


df = df.set_index([df.index, 'Name'])
df.index.names = ['Location', 'Name']
df = df.append(pd.Series(data={'Cost': 3.00, 'Item Purchased': 'Kitty Food'}, name=('Store 2', 'Kevyn')))

Week 1

####List Indexing and Slicing

Example 1

people = ['Dr. Christopher Brooks', 'Dr. Kevyn Collins-Thompson', 'Dr. VG Vinod Vydiswaran', 'Dr. Daniel Romero']

titleName = []
def split_title_and_name():
  for person in people:
    last = person.split(" ")[-1]
    title = person.split(" ")[0]
    titleName.append(title + " "+last)
  print(titleName)

split_title_and_name()

Example 2

people = ['Dr. Christopher Brooks', 'Dr. Kevyn Collins-Thompson', 'Dr. VG Vinod Vydiswaran', 'Dr. Daniel Romero']

def split_title_and_name(person):
    return person.split(" ")[0] + " " + person.split(" ")[-1]

list(map(split_title_and_name,people))

Example 3 (official answer)

people = ['Dr. Christopher Brooks', 'Dr. Kevyn Collins-Thompson', 'Dr. VG Vinod Vydiswaran', 'Dr. Daniel Romero']

def split_title_and_name(person):
    title = person.split()[0]
    lastname = person.split()[-1]
    return '{} {}'.format(title, lastname)

list(map(split_title_and_name, people))

Lambda functions (for writing quick one-liner functions)

my_function = lambda a,b: a+b
my_function(1,2)

list comprehension (list all even numbers in range 0 - 1000)

my_list = [number for number in range(0,1000) if number % 2==0]
def times_tables():
    lst = []
    for i in range(10):
        for j in range (10):
            lst.append(i*j)
    return lst

times_tables() == [j*i for i in range(10) for j in range(10)]
lowercase = 'abcdefghijklmnopqrstuvwxyz'
digits = '0123456789'

correct_answer = [a+b+c+d for a in lowercase for b in lowercase for c in digits for d in digits]

correct_answer[:50] # Display first 50 ids

About

Coursera course with University of Michigan, 11/2016

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published