This guide outlines the step-by-step process for setting up and running the demonstrated ZenML pipeline with Neptune experiment tracking integration. The implementation follows a systematic approach to ensure reproducible machine learning workflows.
- Python 3.9 or higher
- Access to Neptune.ai account
- ZenML cloud account
First, create and activate a dedicated virtual environment:
# Create virtual environment
python -m venv .venv
# Activate virtual environment
# For Unix/MacOS
source .venv/bin/activate
Install required packages from the requirements file:
pip install -r requirements.txt
Initialize and configure ZenML with the following steps:
# Initialize ZenML in your project directory
zenml init
zenml integration install pytorch_lightning neptune
# Connect to ZenML cloud tenant (you can find this command in the overview page of your ZenML cloud tenant)
zenml login 8a462fb6-b...
# Register Neptune experiment tracker
zenml experiment-tracker register neptune_experiment_tracker \
--flavor=neptune \
--project="" \
--api_token=""
# Register and configure stack
zenml stack register neptune_stack \
-o default \
-a default \
-e neptune_experiment_tracker
# Set as active stack
zenml stack set neptune_stack
Run the implementation:
python run.py
- Ensure all environment variables are properly set
- Verify Neptune.ai credentials are correctly configured
- Check ZenML stack status using
zenml stack list