Skip to content

zenodo/zenodo-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Zenodo spam classifiers

Spam classification machine learning models for Zenodo records and communities.

Usage

First of all, create a virtualenv, install the depencencies, and run the Jupyter notebook server:

# Create a virtual environment
   mkvirtualenv --python python3.9 zenodo-classifier
   (zenodo-classifier) pip install -e .
   
# This will also open Jupyter notebook in your browser
   (zenodo-classifier) jupyter notebook

To re-train the model:

  1. Go to Zenodo Open Metadata record at https://doi.org/10.5281/zenodo.787062 to acces all dataset versions.
  2. Download the latest dump locally under data
  3. Open the model_spam_detection_record.ipynb notebook
  4. Update the data_file and model_path variables to point to the new dump location
  5. Run all the cells up to 4. Dump model.

To compare with older models:

TODO

Structure


├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── experiments        <- Experimental model notebooks, previously trained
│
├── legacy             <- Legacy model notebooks
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py