System requirements: Python 3.7.1 Tensorflow 2.2.0 PyTorch 1.2.0 GPU - NVIDIA GeForce RTX 2080
JupyterNotebook: 6.0.3
===============================Data=======================================
All data initial files are in data folder. AirQuality- data->air->initial MIMIC- data->mimic->initial
===============================Data Preprocessing=========================
Run data_preporcessAir.ipynb for preprocessing AirQuality data
Run data_preporcessMimic.ipynb for preprocessing MIMIC data
All data preprocessed files are in "data" folder.
AirQuality-
data->air->preprocess
MIMIC-
data->mimic->preprocess
===============================Bi-GAN==========================
To run Bi-GAN for EHR dataset - Run "biGan/main_ganOrig.ipynb" For training model- Set train=True
For Imputation Testing model-
Set evalImp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set evalPred=True
Set pred_len=8 or 7 or 6 or 5
===============================BRITS-I============================
BRITS-I To run BRITS-I for EHR dataset - Run "britsI/main - original.ipynb" For training model- Set train=True
For Imputation Testing model-
Set evalImp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set evalPred=True
Set pred_len=8 or 7 or 6 or 5
===============================Baseline=========================
Baseline MRNN - Run "mrnn/mrnnBaseline.ipynb" Input Arguments to be set -
For Imputation Testing model-
Set imp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set pred=True
Set pred_len=8 or 7 or 6 or 5
MICE - Run "baseline/MICE.ipynb" Input Arguments to be set -
For Imputation Testing model-
Set imp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set pred=True
Set pred_len=8 or 7 or 6 or 5
KNN- Run "baseline/knn.ipynb" Input Arguments to be set -
For Imputation Testing model-
Set imp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set pred=True
Set pred_len=8 or 7 or 6 or 5
MEAN- Run "baseline/mean.ipynb" Input Arguments to be set -
For Imputation Testing model-
Set imp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set pred=True
Set pred_len=8 or 7 or 6 or 5
===============================Bi-GAN Components=================
Bi-GAN without Discriminator=====================================
To run biWgan for EHR dataset - Run "biWgan/main_Wgan.ipynb.ipynb" For training model- Set train=True
For Imputation Testing model-
Set evalImp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set evalPred=True
Set pred_len=8 or 7 or 6 or 5
Bi-GAN without Lambda=======================================
To run lambda for EHR dataset - Run "lambda/main_ganLambda.ipynb" For training model- Set train=True
For Imputation Testing model-
Set evalImp=True
Set missingRate=10 or 20 or 30 or 40 or 50
For Prediction Testing model-
Set evalPred=True
Set pred_len=8 or 7 or 6 or 5
NOTE: Change path of files as required