Skip to content

zhuofupan/Tensorflow-Deep-Neural-Networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b5d4093 · Aug 15, 2022
Nov 9, 2018
Jul 15, 2019
May 7, 2019
Nov 9, 2018
Nov 7, 2018
Apr 18, 2019
Aug 15, 2022
Nov 7, 2018

Repository files navigation

包含网络

  • 推荐使用:
    Deep Belief Network (DBN)
    Stacked Autoencoder (sAE)
    Stacked Sparse Autoencoder (sSAE)
    Stacked Denoising Autoencoders (sDAE)
  • 尝试更好的模型:
    Convolutional Neural Network (CNN)
    Recurrent Neural Network (RNN)
    Long Short Term Memory (LSTM)

所依赖包

pip install tensorflow (version: 1.X)
pip install keras
pip install librosa (用于语音分类选装)
pip install --upgrade --user numpy pandas h5py (升级包)

用于任务

use_for = 'classification' 用于分类任务
use_for = 'prediction' 用于预测任务

版本信息

Pytorch版本:

推荐PyTorch包

User:

用户可以通过model.py文件控制一些功能的开关:
self.show_pic => show curve in 'Console'?
self.tbd => open/close tensorboard
self.save_model => save/ not save model
self.plot_para => plot W image or not
self.save_weight => save W matrix or not
self.do_tSNE => do t-SNE or not

Version 2018.11.7:

New 新增了两个数据集,一个用于分类,一个用于预测
New 新增t-SNE低维可视化
Chg 修正部分 use_for = 'prediction' 时的Bug

Version 2018.6.1:

New 新增了绘制训练曲线图,预测标签分布图,权值图的功能
Chg 重写了SAE,现在可以放心使用了
Chg 代码的整体运行函数run_sess放到了base_func.py
Chg 回归是可以实现的,需要设置 use_for = 'prediction'

测试结果

用于minst数据集分类,运行得到正确率可达98.78%
用于Urban Sound Classification语音分类,正确率达73.37%
(这个跑完console不会显示结果,因为是网上的比赛数据集,需上传才能得到正确率)
用于Big Mart Sales III预测,RMSE为1152.04
(这个也是网上的数据集,也没有test_Y)

跑的结果并不是太高,有更好的方法请赐教
语音分类未尝试语谱法,欢迎做过的和我交流

数据地址

USC, BMS III

参考资料

Tensorflow基本函数, RBM原理, Hinton源码, sDAE原论文, sSAE分析TE过程, RNN原理, LSTM, Tensorboard

My blog

ResearchGate, 知乎, CSDN
QQ群:640571839

Paper

希望大家多支持支持我们的工作,欢迎交流探讨~
[1] Z. Pan, H. Chen, Y. Wang, B. Huang, and W. Gui, "A new perspective on ae-and vae-based process monitoring," TechRxiv, Apr. 2022, doi.10.36227/techrxiv.19617534.
[2] Z. Pan, Y. Wang, k. Wang, G. Ran, H. Chen, and W. Gui, "Layer-Wise Contribution-Filtered Propagation for Deep Learning-Based Fault Isolation," Int. J. Robust Nonlinear Control, Jul. 2022, doi.10.1002/rnc.6328
[3] Z. Pan, Y. Wang, K. Wang, H. Chen, C. Yang, and W. Gui, "Imputation of Missing Values in Time Series Using an Adaptive-Learned Median-Filled Deep Autoencoder," IEEE Trans. Cybern., 2022, doi.10.1109/TCYB.2022.3167995
[4] Y. Wang, Z. Pan, X. Yuan, C. Yang, and W. Gui, "A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network,” ISA Trans., vol. 96, pp. 457–467, 2020.
[5] Z. Pan, Y. Wang, X. Yuan, C. Yang, and W. Gui, "A classification-driven neuron-grouped sae for feature representation and its application to fault classification in chemical processes ," Knowl.-Based Syst., vol. 230, p. 107350, 2021.
[6] H. Chen, B. Jiang, S. X. Ding, and B. Huang, "Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives," IEEE Trans. Intell. Transp. Syst., 2020, doi.10.1109/TITS.2020.3029946
[7] H. Chen and B. Jiang, "A review of fault detection and diagnosis for the traction system in high-speed trains," IEEE Trans. Intell. Transp. Syst., vol. 21, no. 2, pp. 450–465, Feb. 2020.