This is our Tensorflow implementation for the paper:
Tianyu Zhu, Jiandong Ding, Yansong Shi, Guoqing Chen, Jian-Yun Nie. "Mitigating Popularity Bias in Recommendation with Global Listwise Learning and Progressive Bi-Weighting."
Mult-BiW is a framework for popularity debiasing in item recommendation.
The code has been tested running under Python 3.8. The required packages are as follows:
- tensorflow == 2.8.0+
- numpy == 1.23.0+
- scipy == 1.8.0+
- pandas == 1.5.0+
python MF.py --dataset amazon --lr 1e-4 --l2_reg 1e-6 --alpha -1.0 --eta 1.0
python LightGCN.py --dataset amazon --lr 1e-3 --l2_reg 1e-6 --alpha -1.0 --eta 1.0 --num_layer 2