LIN Description File (.ldf) parser using Rust's nom
parser combinator library. LIN is an automotive serial protocol used for communication between ECUs in a vehicle. (Opinion) It's very resilient, behaves simply, and easy to work with. The LDF file is used to describe the network configuration, including the different nodes and signals sent between them.
Warning
This crate is still in development and may not be suitable for production use.
This parser attempts to be a simple reflection of the well-documented instructions from the LIN specification: https://www.lin-cia.org/fileadmin/microsites/lin-cia.org/resources/documents/LIN_2.2A.pdf
There are some existing parsers that have been around for years if you need something more robust:
- https://github.com/c4deszes/ldfparser (Python)
- https://github.com/uCAN-LIN/LinUSBConverter/tree/master/python_lib (Python)
- https://github.com/TrippW/LDF-Parser (Python)
...but I wanted to try my hand at writing a parser in Rust just for fun.
- LIN_protocol_version
- LIN_language_version
- LIN_speed
- (Channel_name)
- Nodes
- (Node_composition)
- Signals
- (Diagnostic_signals)
- Frames
- (Sporadic_frame)
- (Event_triggered_frame)
- (Diagnostic_frames)
- Node_attributes
- Schedule_table
- (Signal_groups)
- (Signal_encoding_type)
- (Signal_representation)
(optional sections are in parentheses)
Tip
It would be difficult to plan for all edge cases in vendor-specific implementations, so this just tries to follow the specification. CONTRIBUTIONS ARE WELCOMED! You can always open an issue or a PR if you find something that doesn't work as expected - but be sure to anonymize the data if it's proprietary (or just don't share it).
Here's how you can parse an LDF file and access the parsed data for your use case:
use lin_ldf::parse_ldf;
let ldf = r#"
LIN_description_file ;
LIN_protocol_version = "2.1" ;
LIN_language_version = "2.1" ;
LIN_speed = 19.2 kbps ;
/* PARSING IGNORES BLOCK COMMENTS */
// AND LINE COMMENTS
Nodes {
Master: Master, 5 ms, 0.1 ms ;
Slaves: Slave1, Slave2, Slave3 ;
}
Signals {
Signal1: 10, 0, Master, Slave1 , Slave2 ;
Signal2: 10, 0, Master, Slave1 ;
Signal3: 10, 0, Slave1, Master ;
Signal4: 10, 0, Slave1, Master ;
Signal5: 2, 0, Slave1, Master ;
Signal6: 1, 0, Slave1, Master ;
}
Frames {
Frame1: 0, Master, 8 {
Signal1, 0 ;
Signal2, 10 ;
}
Frame2: 0x16, Slave1, 8 {
Signal3, 0 ;
Signal4, 10 ;
}
}
Node_attributes {
Slave1 {
LIN_protocol = "2.1" ;
configured_NAD = 0xB ;
initial_NAD = 0xB ;
product_id = 0x123, 0x4567, 8 ;
response_error = Signal1 ;
P2_min = 100 ms ;
ST_min = 0 ms ;
N_As_timeout = 1000 ms ;
N_Cr_timeout = 1000 ms ;
configurable_frames {
Frame1 ;
Frame2 ;
}
}
Slave2 {
LIN_protocol = "2.1" ;
configured_NAD = 0xC ;
initial_NAD = 0xC ;
product_id = 0x124, 0x4568, 0x66 ;
response_error = Signal2 ;
P2_min = 100 ms ;
ST_min = 0 ms ;
N_As_timeout = 1000 ms ;
N_Cr_timeout = 1000 ms ;
configurable_frames {
Frame1 ;
Frame2 ;
}
}
}
Schedule_tables {
AllFrames {
Frame1 delay 10 ms ;
Frame2 delay 10 ms ;
}
}
"#;
let parsed_ldf = parse_ldf(ldf).expect("Failed to parse LDF file");
println!("LIN Version: {}", parsed_ldf.lin_protocol_version); // 2.1
println!("LIN Speed: {}", parsed_ldf.lin_speed); // 19200
for frame in parsed_ldf.frames {
println!("Frame: `{}` is {} bytes long", frame.frame_name, frame.frame_size);
for signal in frame.signals {
println!("\tSignal: `{}` at bit position {}", signal.signal_name, signal.start_bit);
}
}