Skip to content

zulihit/Rotate-learn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RotatE模型的pytorch实现

简介

本仓库为个人学习所用,记录了本人对于知识图谱嵌入的Rotate模型的学习过程

本代码基于pytorch实现,代码格式非常正规,适合初学者学习

知乎详细介绍:

https://zhuanlan.zhihu.com/p/520284915

原作者代码:

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

论文链接:

https://openreview.net/forum?id=HkgEQnRqYQ

数据集

关于数据集部分,在原作者仓库中下载,复制到主目录中即可,没有的文件夹可能需要创建一下

image

实现的模型

Models:

  • RotatE
  • pRotatE
  • TransE
  • ComplEx
  • DistMult

评价指标:

  • MRR, MR, HITS@1, HITS@3, HITS@10 (filtered)
  • AUC-PR (for Countries data sets)

Loss Function:

  • Uniform Negative Sampling
  • Self-Adversarial Negative Sampling

数据集格式

Knowledge Graph Data:

  • entities.dict: a dictionary map entities to unique ids
  • relations.dict: a dictionary map relations to unique ids
  • train.txt: the KGE model is trained to fit this data set
  • valid.txt: create a blank file if no validation data is available
  • test.txt: the KGE model is evaluated on this data set

Train

For example, this command train a RotatE model on FB15k dataset with GPU 0.

CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --do_train \
 --cuda \
 --do_valid \
 --do_test \
 --data_path data/FB15k \
 --model RotatE \
 -n 256 -b 1024 -d 1000 \
 -g 24.0 -a 1.0 -adv \
 -lr 0.0001 --max_steps 150000 \
 -save models/RotatE_FB15k_0 --test_batch_size 16 -de

在linux终端输入上述代码即可运行程序,在GPU:0训练RotatE模型

Test

CUDA_VISIBLE_DEVICES=$GPU_DEVICE python -u $CODE_PATH/run.py --do_test --cuda -init $SAVE

Reproducing the best results

To reprocude the results in the ICLR 2019 paper RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space, you can run the bash commands in best_config.sh to get the best performance of RotatE, TransE, and ComplEx on five widely used datasets (FB15k, FB15k-237, wn18, wn18rr, Countries).

The run.sh script provides an easy way to search hyper-parameters:

bash run.sh train RotatE FB15k 0 0 1024 256 1000 24.0 1.0 0.0001 200000 16 -de

这里是使用bash脚本来运行程序,更加的方便,对于实现的模型最佳超参数都在best_config.sh文件里

需要哪个复制出来在linux终端里面运行即可

Speed

The KGE models usually take about half an hour to run 10000 steps on a single GeForce GTX 1080 Ti GPU with default configuration. And these models need different max_steps to converge on different data sets:

Dataset FB15k FB15k-237 wn18 wn18rr Countries S*
MAX_STEPS 150000 100000 80000 80000 40000
TIME 9 h 6 h 4 h 4 h 2 h

这是原作者根据不同模型的训练时间

Results of the RotatE model

Dataset FB15k FB15k-237 wn18 wn18rr
MRR .797 ± .001 .337 ± .001 .949 ± .000 .477 ± .001
MR 40 177 309 3340
HITS@1 .746 .241 .944 .428
HITS@3 .830 .375 .952 .492
HITS@10 .884 .533 .959 .571

模型运行的结果

更加基础的TransE代码

https://github.com/zulihit/transE-learn

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published