Skip to content

Summary codes used to calculate electronic susceptibility (for phonon softening) and spectral function (for electronic gap opening) in my CDW research.

License

Notifications You must be signed in to change notification settings

zz11ss11zz/Charge-Density-Wave

Repository files navigation

Charge Density Wave

Summary codes used to calculate electronic susceptibility (for phonon softening) and spectral function (for electronic gap opening) in my CDW research.
Updating without a fixed schedule.
The detailed underlying physics can be found in my publications, the related physical quantities are briefly shown below.

Phonon instability (q-dependent)

Fermi Surface Nesting (FSN)

  • Static Lindhard susceptibility
$${\chi'}_\mathbf{q}=\sum_{\mathbf{k}}\frac{f(\varepsilon_\mathbf{k})-f(\varepsilon_{\mathbf{k}+\mathbf{q}})}{\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_\mathbf{k}}$$
  • Nesting function
$${\chi''}_\mathbf{k}=\sum_{\mathbf{q}}\delta\left(\varepsilon_\mathbf{k}\right)\delta\left(\varepsilon_{\mathbf{k}+\mathbf{q}}\right)$$

Electron-Phonon Coupling (EPC)

  • Moment-dependent electron-phonon coupling
$${\bar{g}}_\mathbf{q}=\sum_{\mathbf{k}}\left|g_{\mathbf{k},\mathbf{k}+\mathbf{q}}\right|^2$$

FSN + EPC

  • Generalized static electronic susceptibility
$$\chi_\mathbf{q}=\sum_{\mathbf{k}}{\left|g_{\mathbf{k},\mathbf{k}+\mathbf{q}}\right|^2\frac{f(\varepsilon_\mathbf{k})-f(\varepsilon_{\mathbf{k}+\mathbf{q}})}{\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_\mathbf{k}}},$$

Scattered electrons (k-dependent)

Transfer sum over $\mathbf{q}$ to sum over $\mathbf{k}$ is from my institution, which should correspond to the scattered electrons (electron instability).

Elastic scattered electrons

$${\chi'}_\mathbf{k}=\sum_{\mathbf{q}}\frac{f\left(\varepsilon_\mathbf{k}\right)-f\left(\varepsilon_{\mathbf{k}+\mathbf{q}}\right)}{\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_\mathbf{k}}$$ $${\chi''}_\mathbf{k}=\sum_{\mathbf{q}}\delta\left(\varepsilon_\mathbf{k}\right)\delta\left(\varepsilon_{\mathbf{k}+\mathbf{q}}\right)$$

Inelastic scattered electrons

$$\chi_\mathbf{k}=\sum_{\mathbf{q}}{\left|g_{\mathbf{k},\mathbf{k}+\mathbf{q}}\right|^2\frac{f(\varepsilon_\mathbf{k})-f(\varepsilon_{\mathbf{k}+\mathbf{q}})}{\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_\mathbf{k}}}$$

Electron instability

The spectral function is calculated to show the CDW gaps

  • Mean-field Hamiltonian
$$H_{mf}=\sum_{\mathbf{k}}{\varepsilon_\mathbf{k}c_\mathbf{k}^\dagger c_\mathbf{k}+\sum_{\mathbf{k},\mathbf{Q}}{2g_{\mathbf{k},\mathbf{k}+\mathbf{Q}}\Delta_\mathbf{Q}c_\mathbf{k}^\dagger c_{\mathbf{k}+\mathbf{Q}}}}+h.c..$$
  • Retarded Green’s function
$$G_R(\omega) = (\omega + i \eta - H_{\text{mf}} )^{-1}.$$

Publications

If you use these CDW codes in your work, please consider citing:

Z. Wang, J. Zhou, K. P. Loh, and Y. P. Feng, Controllable phase transitions between multiple charge density waves in monolayer 1T-VSe2 via charge doping. Appl. Phys. Lett. 119, 163101 (2021)
Z. Wang, C. Chen, J. Mo, J. Zhou, K. P. Loh, and Y. P. Feng, Decisive role of electron-phonon coupling for phonon and electron instabilities in transition metal dichalcogenides. Phys. Rev. Research 5, 013218 (2023)
Z. Wang, J-Y. You, C. Chen, J. Mo, J. He, L. Zhang, J. Zhou, K. P. Loh, and Y. P. Feng, Interplay of the charge density wave transition with topological and superconducting properties. Nanoscale Horizons 8, 1395 (2023)

About

Summary codes used to calculate electronic susceptibility (for phonon softening) and spectral function (for electronic gap opening) in my CDW research.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published