Develop and deploy Streaming Analytics applications visually with bindings for streaming engine and multiple source/sinks, rich set of streaming operators and operational lifecycle management.
##How to run locally From command line execute the following commands:
cd $STREAMLINE-HOME
mvn clean install
cd webservice
mvn package
java -cp target/webservice-0.1.0-SNAPSHOT.jar com.hortonworks.streamline.webservice.StreamlineApplication server conf/streamline-dev.yaml
This should start the webserver on localhost port 8080. If you are running storm on the same host you may get
java.net.BindException: Address already in use
in which case you should modify server
section of streamline.yaml.
##Intellij
Run -> Edit Configuration -> Application -> StreamlineApplication
in the Program argument section
add server $STREAMLINE-HOME/webservice/conf/streamline.yaml
Same config can be used to start debugging.
##Bootstrapping webserver with test data
cd $STREAMLINE-HOME\bootstrap
./bootstrap.sh
Please see bootstrap.sh
which is just bunch of curl commands in case you want to add some other objects to webservice's in memory store.
#Running storm topology
First you need to populate your kafka topic, if you have not done so create your kafka topic by executing
kafka-topics.sh --create --topic nest-topic --zookeeper localhost:2181 --replication-factor 1 --partitions 3
Then run the device simulator CLI to post some sample StreamlineMessage
containing nest data to your kafka topic.
cd $STREAMLINE-HOME
java -cp simulator/target/simulator-0.1.0-SNAPSHOT.jar com.hortonworks.streamline.simulator.CLI -b localhost:9092 -t nest-topic -f simulator/src/main/resources/nest-streamline-messages
Sometimes the command fails with following exceptions:
Exception in thread "main" kafka.common.FailedToSendMessageException: Failed to send messages after 3 tries. at kafka.producer.async.DefaultEventHandler.handle(DefaultEventHandler.scala:90) at kafka.producer.Producer.send(Producer.scala:76) at kafka.javaapi.producer.Producer.send(Producer.scala:33) at com.hortonworks.streamline.simulator.CLI.writeToKafka(CLI.java:182) at com.hortonworks.streamline.simulator.CLI.processDataFile(CLI.java:109) at com.hortonworks.streamline.simulator.CLI.main(CLI.java:74)
You should verify from kafka's server.properties that the listerner port and host matches. if advertised host is actual hostname like 'HW10960.local' localhost may not work.
You can run the simulator command in a loop or run it multiple times to produce same data again and again.
##HBase set up
Before starting hbase, put the below hbase-site.xml in the hbase config directory so that hbase uses the local ZK instance running in your localhost and localfs for storage so that you dont need to start a separate HDFS server instance.
<configuration>
<property>
<name>hbase.rootdir</name>
<value>file:///tmp/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>localhost</value>
</property>
</configuration>
Now you need to create HBase tables where the StreamlineEvent and Notifications will be stored.
hbase shell
create 'nest', 'cf', 'd'
create 'Notification', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Timestamp_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Rule_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Rule_Status_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Datasource_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Datasource_Status_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Notifier_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
create 'Notifier_Status_Notification', 'ni', 'd', 'f', 's', 'e', 'r', 'nn', 'ts'
UI can be used to create/generate a topology and run that on a storm cluster.
#Accounting for bad tuples in a topology
A mechanism has been added so that when messages are being played from a
spout in an Streamline topology and they can't successfully be parsed then such
messages end up in some persistent storage. The way it works is ParserBolt
needs to be supplied with two stream ids using builder methods
withParsedTuplesStreamId and withUnparsedTuplesStreamId. The former stream id
is mandatory and has to be supplied to the bolt. The latter is optional and
can be used tap the tuples that could not be parsed by the parser. Any
subsequent component can subscribe to this stream and get the tuples that
failed to parse using the field bytes
. In sample topology in storm module
an HdfsBolt is used to store the unparsed tuples.
#Accessing UI http://localhost:8080/ui/index.html