Skip to content

Commit

Permalink
Initialized
Browse files Browse the repository at this point in the history
  • Loading branch information
LoSealL committed Mar 18, 2019
0 parents commit ebda5c1
Show file tree
Hide file tree
Showing 3 changed files with 144 additions and 0 deletions.
94 changes: 94 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
## One-click script
Make sure you are in the root folder. You should also have `tensorflow(-gpu)>=1.12.0` and `pytorch>=1.0.0` installed manually.

Before running `one_click_ntire19_rsr.sh` for Real Image Super Resolution, set two paths: `RSR_TEST_DIR` for testing images and `RSR_SAVE_DIR` for saving results.
```bash
RSR_TEST_DIR=bla/bla/bla
RSR_SAVE_DIR=bli/bli/bli
. one_click_ntire19_rsr.sh
```

Before running `one_click_ntire19_drn.sh` for sRGB Image Denoising, set two paths: `DRN_TEST_MAT` for testing mat file and `DRN_SAVE_DIR` for saving results.
```bash
DRN_TEST_MAT=bla/bla/bla/BenchmarkNoisyBlocksSrgb.mat
DRN_SAVE_DIR=bli/bli/bli
. one_click_ntire19_drn.sh
```

You can also do it step-by-step as follows.

## Step by step reproduce instructions

1. Install the whole VSR package and its requirements:
```bash
git clone https://github.com/LoSealL/VideoSuperResolution -b ntire_2019 && cd VideoSuperResolution
pip install -e .
```
Note that you should pre-install `tensorflow` and `pytorch`.

2. Download the pre-trained model:

**make sure you are in the root folder.*

For Real Image Super-Resolution
```bash
python prepare_data.py --filter=rsr -q
```

For sRGB Real Image Denoising (Track #2: sRGB)
```bash
python prepare_data.py --filter=drn -q
```

Model url for manually download:
- [rsr](https://github.com/LoSealL/Model/releases/download/crdn/rsr.zip): https://github.com/LoSealL/Model/releases/download/crdn/rsr.zip
- [drn](https://github.com/LoSealL/Model/releases/download/mldn/drn.zip): https://github.com/LoSealL/Model/releases/download/mldn/drn.zip

3. Prepare testing data:

**make sure you are in the root folder.*

For RSR:

You need to crop images into small patches by:
```bash
python VSR/Tools/DataProcessing/NTIRE19RSR.py --ref_dir=path/to/test/data/folder --patch_size=768 --stride=760 --save_dir=path/to/saving/folder
```

For sRGB Denoising:

You need to convert .MAT file to png images by:
```bash
python VSR/Tools/DataProcessing/NTIRE19Denoise.py --validation=path/to/.MAT --save_dir=path/to/saving/folder
```

4. Predicting

**make sure you are in the root folder.*

For RSR:
Entering VSRTorch folder
```bash
cd VSRTorch
python eval.py rsr --cuda -t=/path/to/divided/test/images/folder --ensemble --pth=../Results/rsr/save/rsr_ep2000.pth
```
The output will be saved in `../Results/rsr/<your-image-folder-name>`. To combine them back together:
```bash
cd ..
python VSR/Tools/DataProcessing/NTIRE19RSR.py --ref_dir=path/to/test/data/folder --patch_size=768 --stride=760 --results=Results/rsr/<your-image-folder>/ --save_dir=path/to/saving/folder
```
Where `--ref_dir` should keep the same as the folder in step 3, it's a reference to know how to combine patches. `--patch_size` and `--stride` should also keep the same.
For sRGB Denoising:
Entering VSRTorch folder
```bash
cd VSRTorch
python eval.py drn --cuda -t=/path/to/divided/test/images/folder --pth=../Results/drn/save/drn_ep2000.pth --output_index=0
```
The output will be saved in `../Results/drn/<your-image-folder-name>`. To pack them into mat file:
```bash
cd ..
python VSR/Tools/DataProcessing/NTIRE19Denoise.py --results=Results/drn/<your-image-folder-name>
```
*If OOM happened, try not to enable `--cuda` flag.
24 changes: 24 additions & 0 deletions one_click_ntire19_drn.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
#!/usr/bin/env bash

#DRN_TEST_MAT=
#DRN_SAVE_DIR=

git clone https://github.com/LoSealL/VideoSuperResolution -b ntire_2019 && cd VideoSuperResolution

if [ ! -e setup.py ];
then
echo " [!] Can't find setup.py file! Make sure you are in the right place!"
fi

echo "DRN_TEST_MAT=${DRN_TEST_MAT}"
echo "DRN_SAVE_DIR=${DRN_SAVE_DIR}"

pip install -e .
python prepare_data.py --filter=drn -q
echo " [*] Model extracted into Results/drn/save"
python VSR/Tools/DataProcessing/NTIRE19Denoise.py --validation=${DRN_TEST_MAT} --save_dir=${DRN_SAVE_DIR}/1/
pushd VSRTorch
python eval.py drn --cuda -t=../${DRN_SAVE_DIR}/1/ --output_index=0
popd
python VSR/Tools/DataProcessing/NTIRE19Denoise.py --results=Results/drn/1/ --save_dir=${DRN_SAVE_DIR}/2/
echo " [*] Processing done. Results are in ${DRN_SAVE_DIR}/2/"
26 changes: 26 additions & 0 deletions one_click_ntire19_rsr.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
#!/usr/bin/env bash

#RSR_TEST_DIR=
#RSR_SAVE_DIR=
_PATCH_SIZE=768
_STRIDE=760

git clone https://github.com/LoSealL/VideoSuperResolution -b ntire_2019 && cd VideoSuperResolution

if [ ! -e setup.py ];
then
echo " [!] Can't find setup.py file! Make sure you are in the right place!"
fi

echo "RSR_TEST_DIR=${RSR_TEST_DIR}"
echo "RSR_SAVE_DIR=${RSR_SAVE_DIR}"

pip install -e .
python prepare_data.py --filter=rsr -q
echo " [*] Model extracted into Results/rsr/save"
python VSR/Tools/DataProcessing/NTIRE19RSR.py --ref_dir=${RSR_TEST_DIR} --patch_size=${_PATCH_SIZE} --stride=${_STRIDE} --save_dir=${RSR_SAVE_DIR}/1/
pushd VSRTorch
python eval.py rsr --cuda --ensemble -t=../${RSR_SAVE_DIR}/1/
popd
python VSR/Tools/DataProcessing/NTIRE19RSR.py --ref_dir=${RSR_TEST_DIR} --patch_size=${_PATCH_SIZE} --stride=${_STRIDE} --results=Results/rsr/1/ --save_dir=${RSR_SAVE_DIR}/2/
echo " [*] Processing done. Results are in ${RSR_SAVE_DIR}/2/"

0 comments on commit ebda5c1

Please sign in to comment.