Skip to content

Code repository of "Deep generative design of RNA family sequences"

License

Notifications You must be signed in to change notification settings

Shunsuke-1994/rfamgen

Repository files navigation

rfamgen

We tested all the following commands in macOS(v12.1) and Linux(v3.10) environment.

install with conda

conda env create -f requirements_rfamgen.yaml
conda activate rfamgen

RfamGen works with python3.7 and pytorch 1.8, but probaboly works with newer versions. Most processes are using the following packages. Please download one-by-one if necessary.

pytorch
numpy
pandas
biopython
sklearn
nltk
infernal
viennarna
h5py

All the following commands are examples using RF00234. Computationa times by Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz are commented.

prep data

Data prep is perfomed based on a cmfile. A cmfile is a file format used in infernal software. Here, we used a cmfile downloaded from Rfam DB. If you want to build, you can generated with cmbuild command of infernal. cmbuild requires SS_cons(consensus secondary structure) in an alignment file of stockholm format. SS_cons can be added by manually or consensus structure estimation such as R-scape.

# Optional. For cleaning sequences in Rfam DB.

python scripts/get_tidy_sequences_from_fasta_rfam.py \
--seed_file ./datasets/Rfam.seed \
--rfam RF00234 \
--output_dir datasets/RF00234 \
--cpu 1 
help of `scripts/make_onehot_from_traceback.py`
usage: make_onehot_from_traceback.py [-h] [--fasta FASTA]
                                     [--traceback TRACEBACK] --cmfile CMFILE
                                     [--cpu CPU]

optional arguments:
  -h, --help            show this help message and exit
  --fasta FASTA         path to fasta file. Fasta file is automatically
                        aligned to cmfile and its traceback will be converted
                        to onehot.
  --traceback TRACEBACK
                        path to gzipped tracebackfile
  --cmfile CMFILE       path to cm file
  --cpu CPU             CPU cores for cmalign program. (default: 4)
python scripts/make_onehot_from_traceback.py \
--fasta datasets/RF00234/RF00234_unique_seed_removed.fa \
--cmfile ./datasets/RF00234/RF00234.cm \
--cpu 1
# real	3m24.649s
# user	3m0.349s
# sys	0m3.531s

After conversion to onehot expressions, split to train/valid/test.

python scripts/split_onehot_train_valid_test.py \
-i datasets/RF00234/RF00234_unique_seed_removed_notrunc_traceback_onehot_cm.h5 \
--train_ratio 0.7 --random_state 42

generate weight

You can generate a weight file from the training data prepared above [Marks, 2011; Morcos, 2011]. Typically, threshold is 0.01~0.2.
The computation time highly depends on the data size.

python scripts/generate_weight.py \
--mode cm \
-i datasets/RF00234/RF00234_unique_seed_removed_notrunc_traceback_onehot_cm_train.h5 \
--threshold 0.1
# real    1m57.974s
# user    1m7.283s
# sys     1m15.031s

train

train.py trains a VAE model, generates config file of training, and optionally generates log/checkpoint files.

help of `scripts/train.py`
usage: train.py [-h] --data_dir DATA_DIR --X_train X_TRAIN --w_train W_TRAIN
                --X_valid X_VALID --w_valid W_VALID [--suffix SUFFIX]
                [--hidden HIDDEN] [--z_dim Z_DIM] [--stride STRIDE]
                [--ker1 KER1] [--ch1 CH1] [--ker2 KER2] [--ch2 CH2]
                [--ker3 KER3] [--ch3 CH3] [--beta BETA] [--use_anneal]
                [--anneal_saturate_rate ANNEAL_SATURATE_RATE]
                [--anneal_rate ANNEAL_RATE] [--batch_size BATCH_SIZE]
                [--epoch EPOCH] [-lr LEARNING_RATE] [--clip CLIP]
                [--only_training] [--use_early_stopping]
                [--tolerance TOLERANCE] [--save_ckpt] [--ckpt_iter CKPT_ITER]
                [--random_seed RANDOM_SEED] [--log] [--log_dir LOG_DIR]
                [--print_every PRINT_EVERY]

optional arguments:
  -h, --help            show this help message and exit
  --data_dir DATA_DIR   directory containing X_train etc.
  --X_train X_TRAIN     file name of training data
  --w_train W_TRAIN     file name of weight for training data
  --X_valid X_VALID     file name of validation data
  --w_valid W_VALID     file name of weight for validation data
  --suffix SUFFIX       suffix of output file name
  --hidden HIDDEN       dimension of hidden space flanking latent space
                        (default: 128)
  --z_dim Z_DIM         dimension of latent space (default: 16)
  --stride STRIDE       stride parameter of all convs (default: 1)
  --ker1 KER1           kernel size parameter of 1st conv (default: 5)
  --ch1 CH1             channel num parameter of 1st conv (default: 5)
  --ker2 KER2           kernel parameter of 2nd conv (default: 5)
  --ch2 CH2             channel num parameter of 2nd conv (default: 5)
  --ker3 KER3           kernel parameter of 3rd conv (default: 7)
  --ch3 CH3             channel num parameter of 3rd conv (default: 8)
  --beta BETA           maximum weight of KL divergence
  --use_anneal          flag for cyclic annealing for KL divergence
  --anneal_saturate_rate ANNEAL_SATURATE_RATE
                        maximum rate for cyclic annealing (default: 0.4)
  --anneal_rate ANNEAL_RATE
                        number of iteration for one increment of annealing
                        (default: 1)
  --batch_size BATCH_SIZE
                        batch size (defailt: 8)
  --epoch EPOCH         maximum epochs (default: 200)
  -lr LEARNING_RATE, --learning_rate LEARNING_RATE
                        learning rate (default: 1e-3)
  --clip CLIP           clipping value (default: 20)
  --only_training       only training
  --use_early_stopping  flag for early stopping
  --tolerance TOLERANCE
                        tolerance for early stopping (default: 3)
  --save_ckpt           flag for checkpoint saving
  --ckpt_iter CKPT_ITER
                        save checkpoint every this iteration (default: 3)
  --random_seed RANDOM_SEED
  --log                 flag for log
  --log_dir LOG_DIR     directory for log output
  --print_every PRINT_EVERY
                        iteration num to print log of learning (default: 20)

Example:

python scripts/train.py \
--data_dir datasets/RF00234 \
--X_train RF00234_unique_seed_removed_notrunc_traceback_onehot_cm_train.h5 \
--w_train RF00234_unique_seed_removed_notrunc_traceback_onehot_cm_train_weight_threshold0p1.h5 \
--X_valid RF00234_unique_seed_removed_notrunc_traceback_onehot_cm_valid.h5 \
--w_valid RF00234_unique_seed_removed_notrunc_traceback_onehot_cm_valid_weight_threshold0p1.h5 \
--epoch 3 \
--beta 1e-3 --use_anneal --use_early_stopping \
--log --log_dir ./outputs/RF00234

# real    0m16.900s
# user    0m12.500s
# sys     0m3.155s

generation by sampling in the latent space.

scripts/sampling_from_gauss.py generates sequences from normal distribution in latent space. You need to input model params, config, and cmfile.
Generation runs very fast unless the cmfile is very long.

python scripts/sampling_from_gauss.py \
--config ./outputs/RF00234/config.yaml \
--ckpt ./outputs/RF00234/model_epoch3.pt \
--cmfile ./datasets/RF00234/RF00234.cm \
--outfasta ./outputs/RF00234/sampled_5seq.fa \
--n_samples 5

# real    0m7.447s
# user    0m6.201s
# sys     0m0.635s

Bayesian estimation of cleavage kinetics

install with conda

conda env create -f requirements_bayesiankin.yaml

see more details in /notebooks/bayesiankinetics/kinetics_analysis_bypyro.ipynb
It takes less than 1 day to estimate the kinetics of 2000 sequences x2 replicates with SVI. The NGS data are available on PRJNA1044007 of SRA.

About

Code repository of "Deep generative design of RNA family sequences"

Resources

License

Stars

Watchers

Forks

Packages

No packages published