forked from intel/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
harness tests on pvc multiple xpus (intel#9908)
* add run_multi_llb.py * update readme * add job hint
- Loading branch information
Chen, Zhentao
authored
Jan 23, 2024
1 parent
02f0aa8
commit 32070dc
Showing
2 changed files
with
169 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
import argparse | ||
import json | ||
import logging | ||
import os | ||
from harness_to_leaderboard import * | ||
from lm_eval import tasks, evaluator, utils, models | ||
from multiprocessing import Queue, Process | ||
import multiprocessing as mp | ||
from contextlib import redirect_stdout, redirect_stderr | ||
from bigdl_llm import BigDLLM | ||
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness | ||
|
||
logging.getLogger("openai").setLevel(logging.WARNING) | ||
|
||
|
||
def parse_device(device): | ||
device = device.split(':') | ||
if len(device) == 0: | ||
return device | ||
device_indices = device[1].split(',') | ||
return list(map(lambda i: f"{device[0]}:{i}", device_indices)) | ||
|
||
def run_job(device, prec, task, args, device_pool, result_pool): | ||
print(f"Current Job: device={device}, precision={prec}, task={task}") | ||
device_type = device.split(':')[0] | ||
description_dict = {} | ||
if args.description_dict_path: | ||
with open(args.description_dict_path, "r") as f: | ||
description_dict = json.load(f) | ||
|
||
model_name = os.path.basename(os.path.realpath(args.pretrained)) | ||
output_path = args.output_path if args.output_path else "results" | ||
|
||
prec_arg = parse_precision(prec, args.model) | ||
model_args = f"pretrained={args.pretrained},{prec_arg}" | ||
if len(args.model_args) > 0: | ||
model_args = f"{model_args},{args.model_args}" | ||
task_names=task_map.get(task, task).split(',') | ||
num_fewshot = task_to_n_few_shots.get(task, args.num_fewshot) | ||
log_dir = f"{output_path}/{model_name}/{device_type}/{prec}/{task}" | ||
os.makedirs(log_dir, exist_ok=True) | ||
|
||
with open(f"{log_dir}/log.txt", 'w') as f, redirect_stderr(f), redirect_stdout(f): | ||
results = evaluator.simple_evaluate( | ||
model=args.model, | ||
model_args=model_args, | ||
tasks=task_names, | ||
num_fewshot=num_fewshot, | ||
batch_size=args.batch_size, | ||
max_batch_size=args.max_batch_size, | ||
device=device, | ||
no_cache=args.no_cache, | ||
limit=args.limit, | ||
description_dict=description_dict, | ||
decontamination_ngrams_path=args.decontamination_ngrams_path, | ||
check_integrity=args.check_integrity, | ||
write_out=args.write_out, | ||
output_base_path=log_dir | ||
) | ||
if len(results['results']) > 1: | ||
average = {} | ||
for _, subtask in results['results'].items(): | ||
for metric, value in subtask.items(): | ||
average[metric] = average.get(metric, []) + [value] | ||
for k, v in average.items(): | ||
average[k] = sum(v) / len(v) if not k.endswith("_stderr") else 0 | ||
results['results'][task] = average | ||
results['versions'][task] = 1 | ||
|
||
dumped = json.dumps(results, indent=2) | ||
print(dumped) | ||
|
||
if args.output_path: | ||
with open(f"{log_dir}/result.json", "w") as f: | ||
f.write(dumped) | ||
result_pool.put(results) | ||
device_pool.put(device) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model", required=True) | ||
parser.add_argument("--model_args", default="") | ||
parser.add_argument("--pretrained", required=True, type=str) | ||
parser.add_argument("--tasks", required=True, nargs='+', type=str) | ||
parser.add_argument("--precision", required=True, nargs='+', type=str) | ||
parser.add_argument("--provide_description", action="store_true") | ||
parser.add_argument("--num_fewshot", type=int, default=0) | ||
parser.add_argument("--batch_size", type=str, default=None) | ||
parser.add_argument( | ||
"--max_batch_size", | ||
type=int, | ||
default=None, | ||
help="Maximal batch size to try with --batch_size auto", | ||
) | ||
parser.add_argument("--device", type=str, default=None) | ||
parser.add_argument("--output_path", default=None) | ||
parser.add_argument( | ||
"--limit", | ||
type=float, | ||
default=None, | ||
help="Limit the number of examples per task. " | ||
"If <1, limit is a percentage of the total number of examples.", | ||
) | ||
parser.add_argument("--data_sampling", type=float, default=None) | ||
parser.add_argument("--no_cache", action="store_true") | ||
parser.add_argument("--decontamination_ngrams_path", default=None) | ||
parser.add_argument("--description_dict_path", default=None) | ||
parser.add_argument("--check_integrity", action="store_true") | ||
parser.add_argument("--write_out", action="store_true", default=False) | ||
parser.add_argument("--output_base_path", type=str, default=None) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
mp.set_start_method('spawn') | ||
args = parse_args() | ||
|
||
assert not args.provide_description # not implemented | ||
|
||
if args.limit: | ||
print( | ||
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." | ||
) | ||
print(f"Selected Tasks: {args.tasks}") | ||
|
||
device_pool = Queue() | ||
result_pool = Queue() | ||
for device in parse_device(args.device): | ||
device_pool.put(device) | ||
|
||
jobs = [] | ||
for prec in args.precision: | ||
for task in args.tasks: | ||
device = device_pool.get() | ||
p = Process(target=run_job, args=(device, prec, task, args, device_pool, result_pool)) | ||
p.start() | ||
jobs.append(p) | ||
|
||
for j in jobs: | ||
j.join() | ||
|
||
while not result_pool.empty(): | ||
result = result_pool.get() | ||
print(result if isinstance(result, str) else evaluator.make_table(result)) | ||
|
||
if __name__ == "__main__": | ||
main() |