Skip to content

Commit

Permalink
harness tests on pvc multiple xpus (intel#9908)
Browse files Browse the repository at this point in the history
* add run_multi_llb.py

* update readme

* add job hint
  • Loading branch information
Chen, Zhentao authored Jan 23, 2024
1 parent 02f0aa8 commit 32070dc
Show file tree
Hide file tree
Showing 2 changed files with 169 additions and 0 deletions.
5 changes: 5 additions & 0 deletions python/llm/dev/benchmark/harness/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,5 +22,10 @@ python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3
```python
python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache
```
### Evaluation using multiple Intel GPU
```python
python run_multi_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device xpu:0,2,3 --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache
```
Taking example above, the script will fork 3 processes, each for one xpu, to execute the tasks.
## Results
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
164 changes: 164 additions & 0 deletions python/llm/dev/benchmark/harness/run_multi_llb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import logging
import os
from harness_to_leaderboard import *
from lm_eval import tasks, evaluator, utils, models
from multiprocessing import Queue, Process
import multiprocessing as mp
from contextlib import redirect_stdout, redirect_stderr
from bigdl_llm import BigDLLM
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness

logging.getLogger("openai").setLevel(logging.WARNING)


def parse_device(device):
device = device.split(':')
if len(device) == 0:
return device
device_indices = device[1].split(',')
return list(map(lambda i: f"{device[0]}:{i}", device_indices))

def run_job(device, prec, task, args, device_pool, result_pool):
print(f"Current Job: device={device}, precision={prec}, task={task}")
device_type = device.split(':')[0]
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)

model_name = os.path.basename(os.path.realpath(args.pretrained))
output_path = args.output_path if args.output_path else "results"

prec_arg = parse_precision(prec, args.model)
model_args = f"pretrained={args.pretrained},{prec_arg}"
if len(args.model_args) > 0:
model_args = f"{model_args},{args.model_args}"
task_names=task_map.get(task, task).split(',')
num_fewshot = task_to_n_few_shots.get(task, args.num_fewshot)
log_dir = f"{output_path}/{model_name}/{device_type}/{prec}/{task}"
os.makedirs(log_dir, exist_ok=True)

with open(f"{log_dir}/log.txt", 'w') as f, redirect_stderr(f), redirect_stdout(f):
results = evaluator.simple_evaluate(
model=args.model,
model_args=model_args,
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=log_dir
)
if len(results['results']) > 1:
average = {}
for _, subtask in results['results'].items():
for metric, value in subtask.items():
average[metric] = average.get(metric, []) + [value]
for k, v in average.items():
average[k] = sum(v) / len(v) if not k.endswith("_stderr") else 0
results['results'][task] = average
results['versions'][task] = 1

dumped = json.dumps(results, indent=2)
print(dumped)

if args.output_path:
with open(f"{log_dir}/result.json", "w") as f:
f.write(dumped)
result_pool.put(results)
device_pool.put(device)


def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--pretrained", required=True, type=str)
parser.add_argument("--tasks", required=True, nargs='+', type=str)
parser.add_argument("--precision", required=True, nargs='+', type=str)
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=str, default=None)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
help="Maximal batch size to try with --batch_size auto",
)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)

return parser.parse_args()


def main():
mp.set_start_method('spawn')
args = parse_args()

assert not args.provide_description # not implemented

if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
print(f"Selected Tasks: {args.tasks}")

device_pool = Queue()
result_pool = Queue()
for device in parse_device(args.device):
device_pool.put(device)

jobs = []
for prec in args.precision:
for task in args.tasks:
device = device_pool.get()
p = Process(target=run_job, args=(device, prec, task, args, device_pool, result_pool))
p.start()
jobs.append(p)

for j in jobs:
j.join()

while not result_pool.empty():
result = result_pool.get()
print(result if isinstance(result, str) else evaluator.make_table(result))

if __name__ == "__main__":
main()

0 comments on commit 32070dc

Please sign in to comment.