forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LLM: Add bloom gguf support (intel-analytics#9734)
* init * update bloom add merges * update * update readme * update for llama error * update
- Loading branch information
Showing
6 changed files
with
230 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
128 changes: 128 additions & 0 deletions
128
python/llm/src/bigdl/llm/transformers/gguf/models/bloom.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import torch | ||
import os | ||
from accelerate import init_empty_weights | ||
from accelerate.utils import set_module_tensor_to_device | ||
from transformers import BloomConfig, BloomForCausalLM, BloomTokenizerFast | ||
|
||
from ..gguf import GGUFFileLoader | ||
|
||
|
||
def load_gguf_bloom(loader: GGUFFileLoader, dtype: torch.dtype = torch.float): | ||
config = loader.config | ||
|
||
bloom_config = BloomConfig( | ||
vocab_size=len(config['tokenizer.ggml.tokens']), | ||
hidden_size=config['bloom.embedding_length'], | ||
n_layer=config['bloom.block_count'], | ||
n_head=config['bloom.attention.head_count'], | ||
rms_norm_eps=config['bloom.attention.layer_norm_epsilon'], | ||
use_cache=True, | ||
pad_token_id=config['tokenizer.ggml.padding_token_id'], | ||
unknown_token_id=config['tokenizer.ggml.unknown_token_id'], | ||
bos_token_id=config['tokenizer.ggml.bos_token_id'], | ||
eos_token_id=config['tokenizer.ggml.eos_token_id'], | ||
pretraining_tp=1, | ||
) | ||
|
||
ckpt = loader.tensors(dtype) | ||
n_head = config['bloom.attention.head_count'] | ||
n_embed = config['bloom.embedding_length'] | ||
ckpt = restore_bloom_weight(ckpt, n_head, n_embed) | ||
|
||
state_dict = {} | ||
state_dict['transformer.word_embeddings.weight'] = ckpt['token_embd.weight'] | ||
state_dict['transformer.word_embeddings_layernorm.weight'] = ckpt['token_embd_norm.weight'] | ||
state_dict['transformer.word_embeddings_layernorm.bias'] = ckpt['token_embd_norm.bias'] | ||
state_dict['transformer.ln_f.weight'] = ckpt['output_norm.weight'] | ||
state_dict['transformer.ln_f.bias'] = ckpt['output_norm.bias'] | ||
state_dict['lm_head.weight'] = ckpt['output.weight'] | ||
for i in range(config['bloom.block_count']): | ||
state_dict[f'transformer.h.{i}.self_attention.query_key_value.weight'] = \ | ||
ckpt[f'blk.{i}.attn_qkv.weight'] | ||
state_dict[f'transformer.h.{i}.self_attention.query_key_value.bias'] = \ | ||
ckpt[f'blk.{i}.attn_qkv.bias'] | ||
state_dict[f'transformer.h.{i}.self_attention.dense.weight'] = \ | ||
ckpt[f'blk.{i}.attn_output.weight'] | ||
state_dict[f'transformer.h.{i}.self_attention.dense.bias'] = \ | ||
ckpt[f'blk.{i}.attn_output.bias'] | ||
state_dict[f'transformer.h.{i}.post_attention_layernorm.weight'] = \ | ||
ckpt[f'blk.{i}.ffn_norm.weight'] | ||
state_dict[f'transformer.h.{i}.post_attention_layernorm.bias'] = \ | ||
ckpt[f'blk.{i}.ffn_norm.bias'] | ||
state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.weight'] = \ | ||
ckpt[f'blk.{i}.ffn_up.weight'] | ||
state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.bias'] = \ | ||
ckpt[f'blk.{i}.ffn_up.bias'] | ||
state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.weight'] = \ | ||
ckpt[f'blk.{i}.ffn_down.weight'] | ||
state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.bias'] = \ | ||
ckpt[f'blk.{i}.ffn_down.bias'] | ||
state_dict[f'transformer.h.{i}.input_layernorm.weight'] = \ | ||
ckpt[f'blk.{i}.attn_norm.weight'] | ||
state_dict[f'transformer.h.{i}.input_layernorm.bias'] = \ | ||
ckpt[f'blk.{i}.attn_norm.bias'] | ||
|
||
with init_empty_weights(): | ||
model = BloomForCausalLM(bloom_config) | ||
|
||
for name, weight in state_dict.items(): | ||
set_module_tensor_to_device(model, name, "cpu", weight, dtype=dtype) | ||
model = model.cpu() | ||
|
||
pieces, merges = loader.tokenizer_pieces() | ||
|
||
current_directory = os.path.dirname(os.path.abspath(__file__)) | ||
token_file = current_directory + "/model_implement/bloom/tokenizer.json" | ||
import json | ||
with open(token_file, 'r') as file: | ||
data = json.load(file) | ||
vocab = {} | ||
# load and replace vocab and merges | ||
for i in range(len(pieces)): | ||
token = pieces[i].piece | ||
score = int(pieces[i].score) | ||
vocab[token] = score | ||
data['model']['vocab'] = vocab | ||
data['model']['merges'] = merges | ||
with open(token_file, 'w') as file: | ||
json.dump(data, file) | ||
tokenizer = BloomTokenizerFast(tokenizer_file=token_file) | ||
return model, tokenizer | ||
|
||
|
||
def restore_bloom_weight(ckpt: dict, n_head: int, n_embed: int): | ||
# see https://github.com/ggerganov/llama.cpp/ | ||
# blob/master/convert-hf-to-gguf.py#L374 | ||
import numpy as np | ||
for name, weight in ckpt.items(): | ||
if name.endswith("attn_qkv.weight"): | ||
part1, part2, part3 = np.split(weight.reshape(-1, n_embed), 3, axis=0) | ||
part1 = part1.reshape((n_head, 1, n_embed // n_head, n_embed)) | ||
part2 = part2.reshape((n_head, 1, n_embed // n_head, n_embed)) | ||
part3 = part3.reshape((n_head, 1, n_embed // n_head, n_embed)) | ||
data = torch.cat([part1, part2, part3], dim=1) | ||
ckpt[name] = data.reshape(-1, n_embed) | ||
elif name.endswith("attn_qkv.bias"): | ||
part1, part2, part3 = np.split(weight, 3, axis=0) | ||
part1 = part1.reshape((n_head, 1, n_embed // n_head)) | ||
part2 = part2.reshape((n_head, 1, n_embed // n_head)) | ||
part3 = part3.reshape((n_head, 1, n_embed // n_head)) | ||
data = torch.cat([part1, part2, part3], dim=1) | ||
ckpt[name] = data.reshape(3 * n_embed, ) | ||
return ckpt |
85 changes: 85 additions & 0 deletions
85
python/llm/src/bigdl/llm/transformers/gguf/models/model_implement/bloom/tokenizer.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
{ | ||
"version": "1.0", | ||
"truncation": null, | ||
"padding": null, | ||
"added_tokens": [ | ||
{ | ||
"id": 0, | ||
"special": true, | ||
"content": "<unk>", | ||
"single_word": false, | ||
"lstrip": false, | ||
"rstrip": false, | ||
"normalized": false | ||
}, | ||
{ | ||
"id": 1, | ||
"special": true, | ||
"content": "<s>", | ||
"single_word": false, | ||
"lstrip": false, | ||
"rstrip": false, | ||
"normalized": false | ||
}, | ||
{ | ||
"id": 2, | ||
"special": true, | ||
"content": "</s>", | ||
"single_word": false, | ||
"lstrip": false, | ||
"rstrip": false, | ||
"normalized": false | ||
}, | ||
{ | ||
"id": 3, | ||
"special": true, | ||
"content": "<pad>", | ||
"single_word": false, | ||
"lstrip": false, | ||
"rstrip": false, | ||
"normalized": false | ||
} | ||
], | ||
"normalizer": null, | ||
"pre_tokenizer": { | ||
"type": "Sequence", | ||
"pretokenizers": [ | ||
{ | ||
"type": "Split", | ||
"pattern": { | ||
"Regex": " ?[^(\\s|[.,!?\u2026\u3002\uff0c\u3001\u0964\u06d4\u060c])]+" | ||
}, | ||
"behavior": "Isolated", | ||
"invert": false | ||
}, | ||
{ | ||
"type": "ByteLevel", | ||
"add_prefix_space": false, | ||
"trim_offsets": true, | ||
"use_regex": false | ||
} | ||
] | ||
}, | ||
"post_processor": { | ||
"type": "ByteLevel", | ||
"add_prefix_space": true, | ||
"trim_offsets": false, | ||
"use_regex": false | ||
}, | ||
"decoder": { | ||
"type": "ByteLevel", | ||
"add_prefix_space": true, | ||
"trim_offsets": true, | ||
"use_regex": false | ||
}, | ||
"model": { | ||
"type": "BPE", | ||
"dropout": null, | ||
"unk_token": null, | ||
"continuing_subword_prefix": null, | ||
"end_of_word_suffix": null, | ||
"fuse_unk": false, | ||
"vocab": null, | ||
"merges": null | ||
} | ||
} |