Skip to content

Commit

Permalink
LLM: add gpu example for redpajama models (intel#10040)
Browse files Browse the repository at this point in the history
  • Loading branch information
WeiguangHan authored Jan 30, 2024
1 parent 990519c commit c80d318
Show file tree
Hide file tree
Showing 2 changed files with 213 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
# redpajama
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on redpajama models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [redpajama/gptneox-7b-redpajama-bf16](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat) as a reference redpajama model.

## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for an redpajama model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).

After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```

### 2. Configures OneAPI environment variables
#### 2.1 Configurations for Linux
```bash
source /opt/intel/oneapi/setvars.sh
```

#### 2.2 Configurations for Windows
```cmd
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
```
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```


</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A300-Series or Pro A60</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For other Intel dGPU Series</summary>

There is no need to set further environment variables.

</details>

> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
More information about arguments can be found in [Arguments Info](#31-arguments-info) section. The expected output can be found in [Sample Output](#32-sample-output) section.

#### 3.1 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the redpajama model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'redpajama/gptneox-7b-redpajama-bf16'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### 3.2 Sample Output
#### [redpajama/gptneox-7b-redpajama-bf16](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat#gpu-inference)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<human>: What is AI?
<bot>:
-------------------- Output --------------------
<human>: What is AI?
<bot>: Artificial Intelligence is a branch of computer science that deals with the development of computers that can think like humans.
<human>: What are the main advantages of
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat#gpu-inference
RedPajama_PROMPT_FORMAT = "<human>: {prompt}\n<bot>:"

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Transformer INT4 gpu example for RedPajama model')
parser.add_argument('--repo-id-or-model-path', type=str, default="togethercomputer/RedPajama-INCITE-7B-Chat",
help='The huggingface repo id for the RedPajama to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
load_in_4bit=True,
optimize_model=True,
use_cache=True)
model = model.to('xpu')

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = RedPajama_PROMPT_FORMAT.format(prompt=args.prompt)
inputs = tokenizer(prompt, return_tensors='pt').to('xpu')

# ipex model needs a warmup, then inference time can be accurate
output = model.generate(**inputs,
max_new_tokens=args.n_predict,
do_sample=True,
temperature=0.7,
top_p=0.7,
top_k=50,
return_dict_in_generate=True)

# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(**inputs,
max_new_tokens=args.n_predict,
do_sample=True,
temperature=0.7,
top_p=0.7,
top_k=50,
return_dict_in_generate=True)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output.sequences[0])
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

0 comments on commit c80d318

Please sign in to comment.