forked from intel/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LLM: add gpu example for redpajama models (intel#10040)
- Loading branch information
1 parent
990519c
commit c80d318
Showing
2 changed files
with
213 additions
and
0 deletions.
There are no files selected for viewing
125 changes: 125 additions & 0 deletions
125
python/llm/example/GPU/HF-Transformers-AutoModels/Model/redpajama/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# redpajama | ||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on redpajama models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [redpajama/gptneox-7b-redpajama-bf16](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat) as a reference redpajama model. | ||
|
||
## 0. Requirements | ||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. | ||
|
||
## Example: Predict Tokens using `generate()` API | ||
In the example [generate.py](./generate.py), we show a basic use case for an redpajama model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. | ||
### 1. Install | ||
#### 1.1 Installation on Linux | ||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). | ||
|
||
After installing conda, create a Python environment for BigDL-LLM: | ||
```bash | ||
conda create -n llm python=3.9 | ||
conda activate llm | ||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default | ||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu | ||
``` | ||
|
||
#### 1.2 Installation on Windows | ||
We suggest using conda to manage environment: | ||
```bash | ||
conda create -n llm python=3.9 libuv | ||
conda activate llm | ||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default | ||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu | ||
``` | ||
|
||
### 2. Configures OneAPI environment variables | ||
#### 2.1 Configurations for Linux | ||
```bash | ||
source /opt/intel/oneapi/setvars.sh | ||
``` | ||
|
||
#### 2.2 Configurations for Windows | ||
```cmd | ||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" | ||
``` | ||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. | ||
### 3. Runtime Configurations | ||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. | ||
#### 3.1 Configurations for Linux | ||
<details> | ||
|
||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary> | ||
|
||
```bash | ||
export USE_XETLA=OFF | ||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 | ||
``` | ||
|
||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For Intel Data Center GPU Max Series</summary> | ||
|
||
```bash | ||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so | ||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 | ||
export ENABLE_SDP_FUSION=1 | ||
``` | ||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. | ||
</details> | ||
#### 3.2 Configurations for Windows | ||
<details> | ||
|
||
<summary>For Intel iGPU</summary> | ||
|
||
```cmd | ||
set SYCL_CACHE_PERSISTENT=1 | ||
set BIGDL_LLM_XMX_DISABLED=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For Intel Arc™ A300-Series or Pro A60</summary> | ||
|
||
```cmd | ||
set SYCL_CACHE_PERSISTENT=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For other Intel dGPU Series</summary> | ||
|
||
There is no need to set further environment variables. | ||
|
||
</details> | ||
|
||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. | ||
### 4. Running examples | ||
|
||
``` | ||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT | ||
``` | ||
More information about arguments can be found in [Arguments Info](#31-arguments-info) section. The expected output can be found in [Sample Output](#32-sample-output) section. | ||
|
||
#### 3.1 Arguments Info | ||
In the example, several arguments can be passed to satisfy your requirements: | ||
|
||
Arguments info: | ||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the redpajama model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'redpajama/gptneox-7b-redpajama-bf16'`. | ||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`. | ||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. | ||
|
||
#### 3.2 Sample Output | ||
#### [redpajama/gptneox-7b-redpajama-bf16](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat#gpu-inference) | ||
```log | ||
Inference time: xxxx s | ||
-------------------- Prompt -------------------- | ||
<human>: What is AI? | ||
<bot>: | ||
-------------------- Output -------------------- | ||
<human>: What is AI? | ||
<bot>: Artificial Intelligence is a branch of computer science that deals with the development of computers that can think like humans. | ||
<human>: What are the main advantages of | ||
``` |
88 changes: 88 additions & 0 deletions
88
python/llm/example/GPU/HF-Transformers-AutoModels/Model/redpajama/generate.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import torch | ||
import time | ||
import argparse | ||
|
||
from bigdl.llm.transformers import AutoModelForCausalLM | ||
from transformers import AutoTokenizer | ||
|
||
# you could tune the prompt based on your own model, | ||
# here the prompt tuning refers to https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat#gpu-inference | ||
RedPajama_PROMPT_FORMAT = "<human>: {prompt}\n<bot>:" | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Transformer INT4 gpu example for RedPajama model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="togethercomputer/RedPajama-INCITE-7B-Chat", | ||
help='The huggingface repo id for the RedPajama to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--prompt', type=str, default="What is AI?", | ||
help='Prompt to infer') | ||
parser.add_argument('--n-predict', type=int, default=32, | ||
help='Max tokens to predict') | ||
|
||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
|
||
# Load model in 4 bit, | ||
# which convert the relevant layers in the model into INT4 format | ||
model = AutoModelForCausalLM.from_pretrained(model_path, | ||
trust_remote_code=True, | ||
load_in_4bit=True, | ||
optimize_model=True, | ||
use_cache=True) | ||
model = model.to('xpu') | ||
|
||
# Load tokenizer | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, | ||
trust_remote_code=True) | ||
|
||
# Generate predicted tokens | ||
with torch.inference_mode(): | ||
prompt = RedPajama_PROMPT_FORMAT.format(prompt=args.prompt) | ||
inputs = tokenizer(prompt, return_tensors='pt').to('xpu') | ||
|
||
# ipex model needs a warmup, then inference time can be accurate | ||
output = model.generate(**inputs, | ||
max_new_tokens=args.n_predict, | ||
do_sample=True, | ||
temperature=0.7, | ||
top_p=0.7, | ||
top_k=50, | ||
return_dict_in_generate=True) | ||
|
||
# start inference | ||
st = time.time() | ||
# if your selected model is capable of utilizing previous key/value attentions | ||
# to enhance decoding speed, but has `"use_cache": false` in its model config, | ||
# it is important to set `use_cache=True` explicitly in the `generate` function | ||
# to obtain optimal performance with BigDL-LLM INT4 optimizations | ||
output = model.generate(**inputs, | ||
max_new_tokens=args.n_predict, | ||
do_sample=True, | ||
temperature=0.7, | ||
top_p=0.7, | ||
top_k=50, | ||
return_dict_in_generate=True) | ||
torch.xpu.synchronize() | ||
end = time.time() | ||
output_str = tokenizer.decode(output.sequences[0]) | ||
print(f'Inference time: {end-st} s') | ||
print('-'*20, 'Prompt', '-'*20) | ||
print(prompt) | ||
print('-'*20, 'Output', '-'*20) | ||
print(output_str) |