forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add tools into previously built images (intel-analytics#9317)
* modify Dockerfile * manually build * modify Dockerfile * add chat.py into inference-xpu * add benchmark into inference-cpu * manually build * add benchmark into inference-cpu * add benchmark into inference-cpu * add benchmark into inference-cpu * add chat.py into inference-xpu * add chat.py into inference-xpu * change ADD to COPY in dockerfile * fix dependency issue * temporarily remove run-spr in llm-cpu * temporarily remove run-spr in llm-cpu
- Loading branch information
1 parent
a259537
commit e1ebbd8
Showing
4 changed files
with
110 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
import intel_extension_for_pytorch as ipex | ||
import torch | ||
import argparse | ||
import sys | ||
# todo: support more model class | ||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig | ||
from transformers import TextIteratorStreamer | ||
from transformers.tools.agents import StopSequenceCriteria | ||
from transformers.generation.stopping_criteria import StoppingCriteriaList | ||
from colorama import Fore | ||
from bigdl.llm import optimize_model | ||
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\ | ||
The assistant gives helpful, detailed, and polite answers to the human's questions." | ||
HUMAN_ID = "<human>" | ||
BOT_ID = "<bot>" | ||
# chat_history formated in [(iput_str, output_str)] | ||
def format_prompt(input_str, | ||
chat_history): | ||
prompt = [f"{SYSTEM_PROMPT}\n"] | ||
for history_input_str, history_output_str in chat_history: | ||
prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n") | ||
prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ") | ||
return "".join(prompt) | ||
def stream_chat(model, | ||
tokenizer, | ||
stopping_criteria, | ||
input_str, | ||
chat_history): | ||
prompt = format_prompt(input_str, chat_history) | ||
# print(prompt) | ||
input_ids = tokenizer([prompt], return_tensors="pt").to('xpu') | ||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | ||
generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512, stopping_criteria=stopping_criteria) | ||
from threading import Thread | ||
# to ensure non-blocking access to the generated text, generation process should be ran in a separate thread | ||
thread = Thread(target=model.generate, kwargs=generate_kwargs) | ||
thread.start() | ||
output_str = [] | ||
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="") | ||
for partial_output_str in streamer: | ||
output_str.append(partial_output_str) | ||
# remove the last HUMAN_ID if exists | ||
print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="") | ||
chat_history.append((input_str, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip())) | ||
def auto_select_model(model_name): | ||
try: | ||
try: | ||
model = AutoModelForCausalLM.from_pretrained(model_path, | ||
low_cpu_mem_usage=True, | ||
torch_dtype="auto", | ||
trust_remote_code=True, | ||
use_cache=True) | ||
except: | ||
model = AutoModel.from_pretrained(model_path, | ||
low_cpu_mem_usage=True, | ||
torch_dtype="auto", | ||
trust_remote_code=True, | ||
use_cache=True) | ||
except: | ||
print("Sorry, the model you entered is not supported in installer.") | ||
sys.exit() | ||
|
||
return model | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model-path", type=str, help="path to an llm") | ||
args = parser.parse_args() | ||
model_path = args.model_path | ||
|
||
model = auto_select_model(model_path) | ||
model = optimize_model(model) | ||
model = model.to('xpu') | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | ||
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)]) | ||
chat_history = [] | ||
while True: | ||
with torch.inference_mode(): | ||
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) | ||
if user_input == "stop": # let's stop the conversation when user input "stop" | ||
break | ||
stream_chat(model=model, | ||
tokenizer=tokenizer, | ||
stopping_criteria=stopping_criteria, | ||
input_str=user_input, | ||
chat_history=chat_history) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters