Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Cleanup] Remove old, unused methods in gflownet.py #332

Merged
merged 2 commits into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 0 additions & 61 deletions gflownet/gflownet.py
Original file line number Diff line number Diff line change
Expand Up @@ -1350,34 +1350,6 @@ def sample_from_reward(
samples_final.extend(samples_accepted[-(n_samples - len(samples_final)) :])
return samples_final

def get_log_corr(self, times):
data_logq = []
times.update(
{
"test_trajs": 0.0,
"test_logq": 0.0,
}
)
# TODO: this could be done just once and store it
for statestr, score in tqdm(
zip(self.buffer.test.samples, self.buffer.test["energies"]), disable=True
):
t0_test_traj = time.time()
traj_list, actions = self.env.get_trajectories(
[],
[],
[self.env.readable2state(statestr)],
[self.env.eos],
)
t1_test_traj = time.time()
times["test_trajs"] += t1_test_traj - t0_test_traj
t0_test_logq = time.time()
data_logq.append(logq(traj_list, actions, self.forward_policy, self.env))
t1_test_logq = time.time()
times["test_logq"] += t1_test_logq - t0_test_logq
corr = np.corrcoef(data_logq, self.buffer.test["energies"])
return corr, data_logq, times


def make_opt(params, logZ, config):
"""
Expand Down Expand Up @@ -1408,36 +1380,3 @@ def make_opt(params, logZ, config):
gamma=config.lr_decay_gamma,
)
return opt, lr_scheduler


def logq(traj_list, actions_list, model, env):
# TODO: this method is probably suboptimal, since it may repeat forward calls for
# the same nodes.
log_q = torch.tensor(1.0)
for traj, actions in zip(traj_list, actions_list):
traj = traj[::-1]
actions = actions[::-1]
masks = tbool(
[env.get_mask_invalid_actions_forward(state, 0) for state in traj],
device=self.device,
)
with torch.no_grad():
logits_traj = model(
tfloat(
env.states2policy(traj),
device=self.device,
float_type=self.float,
)
)
logits_traj[masks] = -torch.inf
logsoftmax = torch.nn.LogSoftmax(dim=1)
logprobs_traj = logsoftmax(logits_traj)
log_q_traj = torch.tensor(0.0)
for s, a, logprobs in zip(*[traj, actions, logprobs_traj]):
log_q_traj = log_q_traj + logprobs[a]
# Accumulate log prob of trajectory
if torch.le(log_q, 0.0):
log_q = torch.logaddexp(log_q, log_q_traj)
else:
log_q = log_q_traj
return log_q.item()
42 changes: 0 additions & 42 deletions gflownet/utils/logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,48 +254,6 @@ def log_train(
step=step,
)

def log_sampler_test(
self, corr: array, data_logq: list, step: int, use_context: bool
):
if not self.do.online:
return
if self.should_eval(step):
test_metrics = dict(
zip(
[
"test_corr_logq_score",
"test_mean_log",
],
[
corr[0, 1],
np.mean(data_logq),
],
)
)
self.log_metrics(
test_metrics,
use_context=use_context,
)

def log_losses(
self,
losses: list,
step: int,
use_context: bool,
):
if not self.do.online:
return
loss_metrics = dict(
zip(
["loss", "term_loss", "flow_loss"],
[loss.item() for loss in losses],
)
)
self.log_metrics(
loss_metrics,
use_context=use_context,
)

def save_models(
self, forward_policy, backward_policy, state_flow, step: int = 1e9, final=False
):
Expand Down
Loading