Code for analyzing outputs from the READII package or the readii-orcestra pipeline.
- shell script for setting up the directory structure
- Python Jupyter Notebook for pre-processing the clinical and image features data and setting up the pre-existing radiomic signatures
- R notebook for performing feature selection and CPH modeling
Raw data (currently what would be the deconstructed output from ORCESTRA object)
└── rawdata
└── {DATASETNAME}
├── clinical
├── fmcib_outputs
└── readii_outputs
{DATASETNAME}_READII-RADIOMICS_MAE.RDS
Processed data = filtered clinical, radiomic, and deep learning features, possibly split into training and test sets
└── procdata
└── {DATASETNAME}
└── clinical
├── cleaned_filtered_clinical_{DATASETNAME}.csv
└── [OPTIONAL] train_test_labelled_clinical_{DATASETNAME}.csv
└── radiomics
├── clinical
└── merged_clinical_{DATASETNAME}.csv
├── features
├── merged_radiomicfeatures_{image_type}_{DATASETNAME}.csv
└── labelled_radiomicfeatures_only_{image_type}_{DATASETNAME}.csv
└── [OPTIONAL] train_test_split
├── clinical
└── train_merged_clinical_{DATASETNAME}.csv
└── test_merged_clinical_{DATASETNAME}.csv
├── train_features
└── train_labelled_radiomicfeatures_only_{image_type}_{DATASETNAME}.csv
└── test_features
└── test_labelled_radiomicfeatures_only_{image_type}_{DATASETNAME}.csv
└── deep_learning
├── clinical
└── merged_clinical_{DATASETNAME}.csv
├── features
└── merged_fmcibfeatures_{image_type}_{DATASETNAME}.csv
└── labelled_fmcibfeatures_only_{image_type}_{DATASETNAME}.csv
└── [OPTIONAL] train_test_split
├── clinical
└── train_merged_clinical_{DATASETNAME}.csv
└── test_merged_clinical_{DATASETNAME}.csv
├── train_features
└── train_labelled_fmcibfeatures_only_{image_type}_{DATASETNAME}.csv
└── test_features
└── test_labelled_fmcibfeatures_only_{image_type}_{DATASETNAME}.csv
- Implement logger
- Implement ORCESTRA download
- Implement MAE deconstructor
- Unpack clinical data --> save to csv
- Unpack radiomic features --> save each experiment to csv
- Unpack deep learning features --> save each experiment to csv
- Get list of experiments, specifically the negative controls
- Make this into a snakemake pipeline
- Implement config file creation if one is not present
- Move data_setup_for_modelling from scripts into notebooks
- Finish implementing survival time and event setup as functions
- Supports MRMR training over k folds
- Doesn't support MRMR training over 1 fold
- Doesn't support regular training over k folds
- Doesn't support loading model weights across k folds