Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue #485: Fix linting #509

Merged
merged 8 commits into from
Nov 29, 2023
2 changes: 1 addition & 1 deletion .lintr
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,6 @@ linters: linters_with_tags(
exclusions: c(
list.files("tests", recursive = TRUE, full.names = TRUE),
list.files("inst", recursive = TRUE, full.names = TRUE),
"vignettes/metric-details.Rmd"
list.files("vignettes", pattern = ".R$", full.names = TRUE)
seabbs marked this conversation as resolved.
Show resolved Hide resolved
)
exclude: "# nolint"
2 changes: 1 addition & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ export(dss_sample)
export(get_duplicate_forecasts)
export(get_forecast_type)
export(get_forecast_unit)
export(interval_coverage_deviation_quantile)
export(interval_coverage_dev_quantile)
export(interval_coverage_quantile)
export(interval_coverage_sample)
export(interval_score)
Expand Down
8 changes: 2 additions & 6 deletions R/add_coverage.R
Original file line number Diff line number Diff line change
Expand Up @@ -51,13 +51,9 @@ add_coverage <- function(data) {
forecast_unit <- get_forecast_unit(data)
data_cols <- colnames(data) # store so we can reset column order later

# what happens if quantiles are not symmetric around the median?
# should things error? Also write tests for that.
interval_data <- quantile_to_interval(data, format = "wide")
interval_data[, interval_coverage := ifelse(
observed <= upper & observed >= lower,
TRUE,
FALSE)
interval_data[,
interval_coverage := (observed <= upper) & (observed >= lower)
][, c("lower", "upper", "observed") := NULL]

data[, range := get_range_from_quantile(quantile)]
Expand Down
2 changes: 1 addition & 1 deletion R/available_forecasts.R
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ available_forecasts <- function(data,
data <- data[data[, .I[1], by = collapse_by]$V1]

# count number of rows = number of forecasts
out <- data[, .(`count` = .N), by = by]
out <- data[, .(count = .N), by = by]

# make sure that all combinations in "by" are included in the output (with
# count = 0). To achieve that, take the unique values in data and expand grid
Expand Down
25 changes: 21 additions & 4 deletions R/data.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@
#' \item{model}{name of the model that generated the forecasts}
#' \item{horizon}{forecast horizon in weeks}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_quantile"


Expand All @@ -44,7 +46,9 @@
#' \item{model}{name of the model that generated the forecasts}
#' \item{horizon}{forecast horizon in weeks}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_point"


Expand All @@ -69,7 +73,9 @@
#' \item{predicted}{predicted value}
#' \item{sample_id}{id for the corresponding sample}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_continuous"


Expand All @@ -94,6 +100,9 @@
#' \item{predicted}{predicted value}
#' \item{sample_id}{id for the corresponding sample}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_integer"


Expand Down Expand Up @@ -124,7 +133,9 @@
#' \item{horizon}{forecast horizon in weeks}
#' \item{predicted}{predicted value}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_binary"


Expand All @@ -147,7 +158,9 @@
#' \item{model}{name of the model that generated the forecasts}
#' \item{horizon}{forecast horizon in weeks}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_quantile_forecasts_only"


Expand All @@ -167,7 +180,9 @@
#' \item{observed}{observed values}
#' \item{location_name}{name of the country for which a prediction was made}
#' }
# nolint start
#' @source \url{https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_truth_only"

#' Summary information for selected metrics
Expand Down Expand Up @@ -215,14 +230,16 @@
#' Default metrics for quantile-based forecasts.
#'
#' A named list with functions:
#' - "wis" = [wis()]
#' - "wis" = [wis]
#' - "overprediction" = [overprediction()]
#' - "underprediction" = [underprediction()]
#' - "dispersion" = [dispersion()]
#' - "bias" = [bias_quantile()]
#' - "coverage_50" = \(...) {run_safely(..., range = 50, fun = [interval_coverage_quantile][interval_coverage_quantile()])}
#' - "coverage_90" = \(...) {run_safely(..., range = 90, fun = [interval_coverage_quantile][interval_coverage_quantile()])}
#' - "coverage_deviation" = [interval_coverage_deviation_quantile()],
#' - "coverage_50" = [interval_coverage_quantile()]
#' - "coverage_90" = \(...) \{
#' run_safely(..., range = 90, fun = [interval_coverage_quantile])
#' \}
seabbs marked this conversation as resolved.
Show resolved Hide resolved
#' - "coverage_deviation" = [interval_coverage_dev_quantile()],
#' - "ae_median" = [ae_median_quantile()]
#' @keywords info
"metrics_quantile"
69 changes: 34 additions & 35 deletions R/metrics-quantile.R
Original file line number Diff line number Diff line change
Expand Up @@ -120,25 +120,26 @@ wis <- function(observed,

reformatted[, eval(cols) := do.call(
interval_score,
list(observed = observed,
lower = lower,
upper = upper,
interval_range = range,
weigh = weigh,
separate_results = separate_results
list(
observed = observed,
lower = lower,
upper = upper,
interval_range = range,
weigh = weigh,
separate_results = separate_results
)
)]

if (!count_median_twice) {
reformatted[, weight := ifelse(range == 0, 0.5, 1)]
} else {
if (count_median_twice) {
reformatted[, weight := 1]
} else {
reformatted[, weight := ifelse(range == 0, 0.5, 1)]
}

# summarise results by forecast_id
reformatted <- reformatted[
, lapply(.SD, weighted.mean, na.rm = na.rm, w = weight),
by = c("forecast_id"),
by = "forecast_id",
.SDcols = colnames(reformatted) %like% paste(cols, collapse = "|")
]

Expand Down Expand Up @@ -230,15 +231,14 @@ interval_coverage_quantile <- function(observed, predicted, quantile, range = 50
if (!all(necessary_quantiles %in% quantile)) {
warning(
"To compute the coverage for a range of ", range, "%, the quantiles ",
necessary_quantiles, " are required. Returning `NA`.")
necessary_quantiles, " are required. Returning `NA`."
)
return(NA)
}
r <- range
reformatted <- quantile_to_interval(observed, predicted, quantile)
reformatted <- reformatted[range %in% r]
reformatted[, coverage := ifelse(
observed >= lower & observed <= upper, TRUE, FALSE
)]
reformatted[, coverage := (observed >= lower) & (observed <= upper)]
return(reformatted$coverage)
}

Expand Down Expand Up @@ -296,34 +296,32 @@ interval_coverage_quantile <- function(observed, predicted, quantile, range = 50
#' c(-2, 0, 3, 3, 4)
#' )
#' quantile <- c(0.1, 0.25, 0.5, 0.75, 0.9)
#' interval_coverage_deviation_quantile(observed, predicted, quantile)
interval_coverage_deviation_quantile <- function(observed, predicted, quantile) {
#' interval_coverage_dev_quantile(observed, predicted, quantile)
interval_coverage_dev_quantile <- function(observed, predicted, quantile) {
assert_input_quantile(observed, predicted, quantile)

# transform available quantiles into central interval ranges
available_ranges <- unique(get_range_from_quantile(quantile))

# check if all necessary quantiles are available
necessary_quantiles <- unique(c(
(100 - available_ranges) / 2,
100 - (100 - available_ranges) / 2) / 100
necessary_quantiles <- unique(
c((100 - available_ranges) / 2, 100 - (100 - available_ranges) / 2) / 100
)
if (!all(necessary_quantiles %in% quantile)) {
missing <- necessary_quantiles[!necessary_quantiles %in% quantile]
warning(
"To compute coverage deviation, all quantiles must form central ",
"symmetric prediction intervals. Missing quantiles: ",
toString(missing), ". Returning `NA`.")
toString(missing), ". Returning `NA`."
)
return(NA)
}

reformatted <- quantile_to_interval(observed, predicted, quantile)[range != 0]
reformatted[, coverage := ifelse(
observed >= lower & observed <= upper, TRUE, FALSE
)]
reformatted[, coverage := (observed >= lower) & (observed <= upper)]
reformatted[, coverage_deviation := coverage - range / 100]
out <- reformatted[, .(coverage_deviation = mean(coverage_deviation)),
by = c("forecast_id")]
by = "forecast_id"]
return(out$coverage_deviation)
}

Expand Down Expand Up @@ -427,14 +425,14 @@ bias_quantile_single_vector <- function(observed, predicted, quantile, na.rm) {
predicted_has_NAs <- anyNA(predicted)
quantile_has_NAs <- anyNA(quantile)

if(any(predicted_has_NAs, quantile_has_NAs)) {
if (!na.rm) {
return(NA_real_)
} else {
if (any(predicted_has_NAs, quantile_has_NAs)) {
if (na.rm) {
quantile <- quantile[!is.na(predicted)]
predicted <- predicted[!is.na(predicted)]
predicted <- predicted[!is.na(quantile)]
quantile <- quantile[!is.na(quantile)]
} else {
return(NA_real_)
}
}

Expand Down Expand Up @@ -623,12 +621,13 @@ wis_one_to_one <- function(observed,
reformatted <- quantile_to_interval(observed, predicted, quantile)
reformatted[, eval(cols) := do.call(
interval_score,
list(observed = observed,
lower = lower,
upper = upper,
interval_range = range,
weigh = weigh,
separate_results = separate_results
list(
observed = observed,
lower = lower,
upper = upper,
interval_range = range,
weigh = weigh,
separate_results = separate_results
)
)]

Expand Down Expand Up @@ -672,7 +671,7 @@ wis_one_to_one <- function(observed,
if (output == "matrix") {
wis <- matrix(wis, nrow = n, ncol = N)
if (separate_results) {
components <- lapply(components, function(x) matrix(x, nrow = n, ncol = N))
components <- lapply(components, matrix, nrow = n, ncol = N)
return(c(wis, components))
} else {
return(wis)
Expand Down
4 changes: 1 addition & 3 deletions R/metrics-sample.R
Original file line number Diff line number Diff line change
Expand Up @@ -313,9 +313,7 @@ interval_coverage_sample <- function(observed, predicted, range = 50) {
# this could call interval_coverage_quantile instead
# ==========================================================
interval_dt <- quantile_to_interval(quantile_dt, format = "wide")
interval_dt[, coverage := ifelse(
observed >= lower & observed <= upper, TRUE, FALSE
)]
interval_dt[, coverage := (observed >= lower) & (observed <= upper)]
# ==========================================================
return(interval_dt$coverage)
}
10 changes: 5 additions & 5 deletions R/pairwise-comparisons.R
Original file line number Diff line number Diff line change
Expand Up @@ -66,10 +66,10 @@ pairwise_comparison <- function(scores,
baseline = NULL,
...) {
metric <- match.arg(metric, c("auto", available_metrics()))
if (!is.data.table(scores)) {
scores <- as.data.table(scores)
} else {
if (is.data.table(scores)) {
scores <- copy(scores)
} else {
scores <- as.data.table(scores)
}

# determine metric automatically
Expand Down Expand Up @@ -228,8 +228,8 @@ pairwise_comparison_one_group <- function(scores,

# make result character instead of factor
result[, `:=`(
"model" = as.character(model),
"compare_against" = as.character(compare_against)
model = as.character(model),
compare_against = as.character(compare_against)
)]

# calculate relative skill as geometric mean
Expand Down
8 changes: 4 additions & 4 deletions R/pit.R
Original file line number Diff line number Diff line change
Expand Up @@ -125,10 +125,10 @@ pit_sample <- function(observed,

# check data type ------------------------------------------------------------
# check whether continuous or integer
if (!isTRUE(all.equal(as.vector(predicted), as.integer(predicted)))) {
continuous_predictions <- TRUE
} else {
if (isTRUE(all.equal(as.vector(predicted), as.integer(predicted)))) {
continuous_predictions <- FALSE
} else {
continuous_predictions <- TRUE
}

# calculate PIT-values -------------------------------------------------------
Expand Down Expand Up @@ -209,7 +209,7 @@ pit <- function(data,
value.var = "predicted"
)

pit <- data_wide[, .("pit_value" = pit_sample(
pit <- data_wide[, .(pit_value = pit_sample(
observed = observed,
predicted = as.matrix(.SD)
)),
Expand Down
2 changes: 1 addition & 1 deletion R/plot.R
Original file line number Diff line number Diff line change
Expand Up @@ -470,7 +470,7 @@
# it separately here to deal with the case when only the median is provided
# (in which case ggdist::geom_lineribbon() will fail)
if (0 %in% range) {
select_median <- (forecasts$range %in% 0 & forecasts$boundary == "lower")
select_median <- (forecasts$range == 0 & forecasts$boundary == "lower")
median <- forecasts[select_median]

if (nrow(median) > 0) {
Expand Down Expand Up @@ -968,7 +968,7 @@
#' ) +
#' facet_wrap("target_type")

plot.scoringutils_available_forecasts <- function(x,

Check warning on line 971 in R/plot.R

View workflow job for this annotation

GitHub Actions / lint-changed-files

file=R/plot.R,line=971,col=1,[object_length_linter] Variable and function names should not be longer than 30 characters.
yvar = "model",
xvar = "forecast_date",
make_xvar_factor = TRUE,
Expand Down
19 changes: 9 additions & 10 deletions R/score.R
Original file line number Diff line number Diff line change
Expand Up @@ -229,11 +229,13 @@ score.scoringutils_quantile <- function(data, metrics = metrics_quantile, ...) {

# transpose the forecasts that belong to the same forecast unit
# make sure the quantiles and predictions are ordered in the same way
d_transposed <- data[, .(predicted = list(predicted[order(quantile)]),
observed = unique(observed),
quantile = list(quantile[order(quantile)]),
scoringutils_quantile = toString(quantile[order(quantile)])),
by = forecast_unit]
d_transposed <- data[, .(
predicted = list(predicted[order(quantile)]),
observed = unique(observed),
quantile = list(sort(quantile, na.last = TRUE)),
scoringutils_quantile = toString(sort(quantile, na.last = TRUE))
),
by = forecast_unit]

# split according to quantile lengths and do calculations for different
# quantile lengths separately. The function `wis()` assumes that all
Expand Down Expand Up @@ -265,12 +267,9 @@ apply_metrics <- function(data, metrics, ...) {
data[, (metric_name) := do.call(run_safely, list(..., fun = fun))]
)
lapply(seq_along(metrics), function(i, data, ...) {
metric_name <- names(metrics[i])
fun <- metrics[[i]]
metric_name <- names(metrics[i]) # nolint
fun <- metrics[[i]] # nolint
eval(expr)
}, data, ...)
return(data)
}



4 changes: 2 additions & 2 deletions R/summarise_scores.R
Original file line number Diff line number Diff line change
Expand Up @@ -114,8 +114,8 @@ summarise_scores <- function(scores,
stored_attributes <- c(
get_scoringutils_attributes(scores),
list(
"scoringutils_by" = by,
"unsummarised_scores" = scores
scoringutils_by = by,
unsummarised_scores = scores
)
)

Expand Down
Loading
Loading