Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dominoes: sync #1974

Merged
merged 1 commit into from
Aug 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions exercises/practice/dominoes/.meta/test_template.tera
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
{% for test in cases %}
#[test]
#[ignore]
fn {{ test.description | make_ident }}() {
let input = &[
{% for domino in test.input.dominoes %}
({{ domino.0 }}, {{domino.1 }}),
{% endfor %}
];
{%- if test.expected %}
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
{%- else %}
assert!(dominoes::chain(input).is_none());
{%- endif %}
}
{% endfor -%}

type Domino = (u8, u8);

fn assert_correct(input: &[Domino], output: Vec<Domino>) {
if input.len() != output.len() {
panic!("Length mismatch for input {input:?}, output {output:?}");
} else if input.is_empty() {
// and thus output.is_empty()
return;
}

let mut output_sorted = output
.iter()
.map(|&d| normalize(d))
.collect::<Vec<Domino>>();
output_sorted.sort_unstable();
let mut input_sorted = input.iter().map(|&d| normalize(d)).collect::<Vec<Domino>>();
input_sorted.sort_unstable();
if input_sorted != output_sorted {
panic!("Domino mismatch for input {input:?}, output {output:?}");
}

// both input and output have at least 1 element
// This essentially puts the first element after the last one, thereby making it
// easy to check whether the domino chains "wraps around".
{
let mut n = output[0].1;
let iter = output.iter().skip(1).chain(output.iter().take(1));
for &(first, second) in iter {
if n != first {
panic!("Chaining failure for input {input:?}, output {output:?}")
}
n = second
}
}
}

fn normalize(d: Domino) -> Domino {
match d {
(m, n) if m > n => (n, m),
(m, n) => (m, n),
}
}
37 changes: 34 additions & 3 deletions exercises/practice/dominoes/.meta/tests.toml
Original file line number Diff line number Diff line change
@@ -1,13 +1,41 @@
# This is an auto-generated file. Regular comments will be removed when this
# file is regenerated. Regenerating will not touch any manually added keys,
# so comments can be added in a "comment" key.
# This is an auto-generated file.
#
# Regenerating this file via `configlet sync` will:
# - Recreate every `description` key/value pair
# - Recreate every `reimplements` key/value pair, where they exist in problem-specifications
# - Remove any `include = true` key/value pair (an omitted `include` key implies inclusion)
# - Preserve any other key/value pair
#
# As user-added comments (using the # character) will be removed when this file
# is regenerated, comments can be added via a `comment` key.

[31a673f2-5e54-49fe-bd79-1c1dae476c9c]
description = "empty input = empty output"

[4f99b933-367b-404b-8c6d-36d5923ee476]
description = "singleton input = singleton output"

[91122d10-5ec7-47cb-b759-033756375869]
description = "singleton that can't be chained"

[be8bc26b-fd3d-440b-8e9f-d698a0623be3]
description = "three elements"

[99e615c6-c059-401c-9e87-ad7af11fea5c]
description = "can reverse dominoes"

[51f0c291-5d43-40c5-b316-0429069528c9]
description = "can't be chained"

[9a75e078-a025-4c23-8c3a-238553657f39]
description = "disconnected - simple"

[0da0c7fe-d492-445d-b9ef-1f111f07a301]
description = "disconnected - double loop"

[b6087ff0-f555-4ea0-a71c-f9d707c5994a]
description = "disconnected - single isolated"

[2174fbdc-8b48-4bac-9914-8090d06ef978]
description = "need backtrack"

Expand All @@ -16,3 +44,6 @@ description = "separate loops"

[cd061538-6046-45a7-ace9-6708fe8f6504]
description = "nine elements"

[44704c7c-3adb-4d98-bd30-f45527cf8b49]
description = "separate three-domino loops"
182 changes: 78 additions & 104 deletions exercises/practice/dominoes/tests/dominoes.rs
Original file line number Diff line number Diff line change
@@ -1,166 +1,89 @@
use crate::CheckResult::*;

type Domino = (u8, u8);

#[derive(Debug)]
enum CheckResult {
GotInvalid, // chain returned None
Correct,
ChainingFailure(Vec<Domino>), // failure to match the dots at the right side of one domino with
// the one on the left side of the next
LengthMismatch(Vec<Domino>),
DominoMismatch(Vec<Domino>), // different dominoes are used in input and output
}

fn normalize(d: Domino) -> Domino {
match d {
(m, n) if m > n => (n, m),
(m, n) => (m, n),
}
}

fn check(input: &[Domino]) -> CheckResult {
let output = match dominoes::chain(input) {
None => return GotInvalid,
Some(o) => o,
};
if input.len() != output.len() {
return LengthMismatch(output);
} else if input.is_empty() {
// and thus output.is_empty()
return Correct;
}

let mut output_sorted = output
.iter()
.map(|&d| normalize(d))
.collect::<Vec<Domino>>();
output_sorted.sort_unstable();
let mut input_sorted = input.iter().map(|&d| normalize(d)).collect::<Vec<Domino>>();
input_sorted.sort_unstable();
if input_sorted != output_sorted {
return DominoMismatch(output);
}

// both input and output have at least 1 element
// This essentially puts the first element after the last one, thereby making it
// easy to check whether the domino chains "wraps around".
let mut fail = false;
{
let mut n = output[0].1;
let iter = output.iter().skip(1).chain(output.iter().take(1));
for &(first, second) in iter {
if n != first {
fail = true;
break;
}
n = second
}
}
if fail {
ChainingFailure(output)
} else {
Correct
}
}

fn assert_correct(input: &[Domino]) {
match check(input) {
Correct => (),
GotInvalid => panic!("Unexpectedly got invalid on input {input:?}"),
ChainingFailure(output) => {
panic!("Chaining failure for input {input:?}, output {output:?}")
}
LengthMismatch(output) => {
panic!("Length mismatch for input {input:?}, output {output:?}")
}
DominoMismatch(output) => {
panic!("Domino mismatch for input {input:?}, output {output:?}")
}
}
}

#[test]
fn empty_input_empty_output() {
let input = &[];
assert_eq!(dominoes::chain(input), Some(vec![]));
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
#[ignore]
fn singleton_input_singleton_output() {
let input = &[(1, 1)];
assert_correct(input);
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
#[ignore]
fn singleton_that_cant_be_chained() {
fn singleton_that_can_t_be_chained() {
let input = &[(1, 2)];
assert_eq!(dominoes::chain(input), None);
assert!(dominoes::chain(input).is_none());
}

#[test]
#[ignore]
fn no_repeat_numbers() {
fn three_elements() {
let input = &[(1, 2), (3, 1), (2, 3)];
assert_correct(input);
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
#[ignore]
fn can_reverse_dominoes() {
let input = &[(1, 2), (1, 3), (2, 3)];
assert_correct(input);
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
#[ignore]
fn no_chains() {
fn can_t_be_chained() {
let input = &[(1, 2), (4, 1), (2, 3)];
assert_eq!(dominoes::chain(input), None);
assert!(dominoes::chain(input).is_none());
}

#[test]
#[ignore]
fn disconnected_simple() {
let input = &[(1, 1), (2, 2)];
assert_eq!(dominoes::chain(input), None);
assert!(dominoes::chain(input).is_none());
}

#[test]
#[ignore]
fn disconnected_double_loop() {
let input = &[(1, 2), (2, 1), (3, 4), (4, 3)];
assert_eq!(dominoes::chain(input), None);
assert!(dominoes::chain(input).is_none());
}

#[test]
#[ignore]
fn disconnected_single_isolated() {
let input = &[(1, 2), (2, 3), (3, 1), (4, 4)];
assert_eq!(dominoes::chain(input), None);
assert!(dominoes::chain(input).is_none());
}

#[test]
#[ignore]
fn need_backtrack() {
let input = &[(1, 2), (2, 3), (3, 1), (2, 4), (2, 4)];
assert_correct(input);
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
#[ignore]
fn separate_loops() {
let input = &[(1, 2), (2, 3), (3, 1), (1, 1), (2, 2), (3, 3)];
assert_correct(input);
}

#[test]
#[ignore]
fn pop_same_value_first() {
let input = &[(2, 3), (3, 1), (1, 1), (2, 2), (3, 3), (2, 1)];
assert_correct(input);
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
Expand All @@ -177,5 +100,56 @@ fn nine_elements() {
(3, 4),
(5, 6),
];
assert_correct(input);
let output = dominoes::chain(input);
assert!(output.is_some());
assert_correct(input, output.unwrap());
}

#[test]
#[ignore]
fn separate_three_domino_loops() {
let input = &[(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)];
assert!(dominoes::chain(input).is_none());
}
type Domino = (u8, u8);

fn assert_correct(input: &[Domino], output: Vec<Domino>) {
if input.len() != output.len() {
panic!("Length mismatch for input {input:?}, output {output:?}");
} else if input.is_empty() {
// and thus output.is_empty()
return;
}

let mut output_sorted = output
.iter()
.map(|&d| normalize(d))
.collect::<Vec<Domino>>();
output_sorted.sort_unstable();
let mut input_sorted = input.iter().map(|&d| normalize(d)).collect::<Vec<Domino>>();
input_sorted.sort_unstable();
if input_sorted != output_sorted {
panic!("Domino mismatch for input {input:?}, output {output:?}");
}

// both input and output have at least 1 element
// This essentially puts the first element after the last one, thereby making it
// easy to check whether the domino chains "wraps around".
{
let mut n = output[0].1;
let iter = output.iter().skip(1).chain(output.iter().take(1));
for &(first, second) in iter {
if n != first {
panic!("Chaining failure for input {input:?}, output {output:?}")
}
n = second
}
}
}

fn normalize(d: Domino) -> Domino {
match d {
(m, n) if m > n => (n, m),
(m, n) => (m, n),
}
}