Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for Phi-3.5-vision-instruct #9209

Draft
wants to merge 2 commits into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
141 changes: 141 additions & 0 deletions examples/llava/clip.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,8 @@ static std::string format(const char * fmt, ...) {
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_SUB_GN "v.sub_gn"
#define TN_GLB_GN "v.glb_gn"

#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
Expand Down Expand Up @@ -530,6 +532,9 @@ struct clip_vision_model {
struct ggml_tensor * mm_model_ln_kv_b;
struct ggml_tensor * mm_model_ln_post_w;
struct ggml_tensor * mm_model_ln_post_b;

struct ggml_tensor * sub_gn;
struct ggml_tensor * glb_gn;
};

struct clip_ctx {
Expand Down Expand Up @@ -777,6 +782,138 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32

// print_tensor_info(embeddings, "embeddings");

// phi-3.5-vision-instruct
if (model.sub_gn && model.glb_gn) {
// Phi3VisionEmbedding.hd_transform()
ggml_tensor * x = embeddings;

int num_images = batch_size;
int h_crop = 1, w_crop = 1;

int C = x->ne[0];
int L = x->ne[1];
int N = x->ne[2];

int H = (int)sqrt((float)L);

GGML_ASSERT(H * H == L);

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

// Phi3ImageEmbedding.reshape_hd_patches_2x2merge()
x = ggml_reshape_4d(ctx0, x, N, H, H, C);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 2, 1, 3));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 0, 1, 2));
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 2, 3, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 2, H / 2, 2, H / 2 * C * N);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 2, 1, 3));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 1, 3, 2));
x = ggml_reshape_3d(ctx0, x, N * C * (H / 2), (H / 2), 4);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4, H / 2, H / 2, N * C);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4, (H / 2) * (H / 2), C, N);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 3, 1, 2));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4 * C, H / 2, H / 2, N);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, (H / 2) * 4 * C, (H / 2), w_crop, num_images * h_crop);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 2, 1, 3));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4 * C, w_crop * (H / 2), h_crop * (H / 2), num_images);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

ggml_tensor * global_image_features_hd = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

// Phi3ImageEmbedding.add_image_newline()
ggml_tensor * newline_embedding = model.sub_gn;
for (int i = 0; i < H/2-1; i++) {
newline_embedding = ggml_concat(ctx0, newline_embedding, model.sub_gn, 2);
}
ggml_tensor * global_image_features_hd_newline = ggml_concat(ctx0, global_image_features_hd, newline_embedding, 1);

global_image_features_hd_newline = ggml_cont(ctx0, ggml_permute(ctx0, global_image_features_hd_newline, 3, 2, 1, 0));
global_image_features_hd_newline = ggml_reshape_4d(ctx0, global_image_features_hd_newline, 1, 1, (w_crop*(H/2)+1) * h_crop*(H/2), 4*C);
global_image_features_hd_newline = ggml_cont(ctx0, ggml_permute(ctx0, global_image_features_hd_newline, 3, 2, 1, 0));

h_crop = image_size / 336;
w_crop = image_size / 336;

// sub_image_features_hd
x = embeddings;

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

// Phi3ImageEmbedding.reshape_hd_patches_2x2merge()
x = ggml_reshape_4d(ctx0, x, N, H, H, C);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 2, 1, 3));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 0, 1, 2));
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 2, 3, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 2, H / 2, 2, H / 2 * C * N);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 2, 1, 3));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 1, 3, 2));
x = ggml_reshape_3d(ctx0, x, N * C * (H / 2), (H / 2), 4);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4, H / 2, H / 2, N * C);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4, (H / 2) * (H / 2), C, N);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 3, 1, 2));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4 * C, H / 2, H / 2, N);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, (H / 2) * 4 * C, (H / 2), w_crop, num_images * h_crop);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 0, 2, 1, 3));

x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));
x = ggml_reshape_4d(ctx0, x, 4 * C, w_crop * (H / 2), h_crop * (H / 2), num_images);
x = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

ggml_tensor * sub_image_features_hd = ggml_cont(ctx0, ggml_permute(ctx0, x, 3, 2, 1, 0));

// Phi3ImageEmbedding.add_image_newline()
newline_embedding = model.sub_gn;
for (int i = 0; i < (H/2-1); i++) {
newline_embedding = ggml_concat(ctx0, newline_embedding, model.sub_gn, 2);
}
ggml_tensor * sub_image_features_hd_newline = ggml_concat(ctx0, sub_image_features_hd, newline_embedding, 1);

sub_image_features_hd_newline = ggml_cont(ctx0, ggml_permute(ctx0, sub_image_features_hd_newline, 3, 2, 1, 0));
sub_image_features_hd_newline = ggml_reshape_4d(ctx0, sub_image_features_hd_newline, 1, 1, (w_crop*(H/2)+1) * h_crop*(H/2), 4*C);
sub_image_features_hd_newline = ggml_cont(ctx0, ggml_permute(ctx0, sub_image_features_hd_newline, 3, 2, 1, 0));

embeddings = ggml_concat(ctx0, sub_image_features_hd_newline, model.glb_gn, 1);
embeddings = ggml_concat(ctx0, embeddings, global_image_features_hd_newline, 1);
}

// llava projector
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
Expand Down Expand Up @@ -1402,6 +1539,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
} catch (std::runtime_error & /*e*/) { }
try {
vision_model.sub_gn = get_tensor(new_clip->ctx_data, TN_SUB_GN);
vision_model.glb_gn = get_tensor(new_clip->ctx_data, TN_GLB_GN);
} catch (std::runtime_error & /*e*/) { }
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projection
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
Expand Down
Loading