-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
311 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
135 changes: 135 additions & 0 deletions
135
python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
# MiniCPM-V | ||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-V](https://huggingface.co/openbmb/MiniCPM-V) as a reference MiniCPM-V model. | ||
|
||
## 0. Requirements | ||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. | ||
|
||
## Example: Predict Tokens using `chat()` API | ||
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. | ||
### 1. Install | ||
#### 1.1 Installation on Linux | ||
We suggest using conda to manage environment: | ||
```bash | ||
conda create -n llm python=3.11 | ||
conda activate llm | ||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default | ||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ | ||
|
||
pip install timm | ||
``` | ||
|
||
#### 1.2 Installation on Windows | ||
We suggest using conda to manage environment: | ||
```bash | ||
conda create -n llm python=3.11 libuv | ||
conda activate llm | ||
|
||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default | ||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ | ||
|
||
pip install timm | ||
``` | ||
|
||
### 2. Configures OneAPI environment variables for Linux | ||
|
||
> [!NOTE] | ||
> Skip this step if you are running on Windows. | ||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. | ||
|
||
```bash | ||
source /opt/intel/oneapi/setvars.sh | ||
``` | ||
|
||
### 3. Runtime Configurations | ||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. | ||
#### 3.1 Configurations for Linux | ||
<details> | ||
|
||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary> | ||
|
||
```bash | ||
export USE_XETLA=OFF | ||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 | ||
export SYCL_CACHE_PERSISTENT=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For Intel Data Center GPU Max Series</summary> | ||
|
||
```bash | ||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so | ||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 | ||
export SYCL_CACHE_PERSISTENT=1 | ||
export ENABLE_SDP_FUSION=1 | ||
``` | ||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. | ||
</details> | ||
<details> | ||
|
||
<summary>For Intel iGPU</summary> | ||
|
||
```bash | ||
export SYCL_CACHE_PERSISTENT=1 | ||
export BIGDL_LLM_XMX_DISABLED=1 | ||
``` | ||
|
||
</details> | ||
|
||
#### 3.2 Configurations for Windows | ||
<details> | ||
|
||
<summary>For Intel iGPU</summary> | ||
|
||
```cmd | ||
set SYCL_CACHE_PERSISTENT=1 | ||
set BIGDL_LLM_XMX_DISABLED=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For Intel Arc™ A-Series Graphics</summary> | ||
|
||
```cmd | ||
set SYCL_CACHE_PERSISTENT=1 | ||
``` | ||
|
||
</details> | ||
|
||
> [!NOTE] | ||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. | ||
### 4. Running examples | ||
|
||
``` | ||
python ./generate.py --prompt 'What is in the image?' | ||
``` | ||
|
||
Arguments info: | ||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V (e.g. `openbmb/MiniCPM-V`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V'`. | ||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. | ||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. | ||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. | ||
|
||
#### Sample Output | ||
|
||
#### [openbmb/MiniCPM-V](https://huggingface.co/openbmb/MiniCPM-V) | ||
|
||
```log | ||
Inference time: xxxx s | ||
-------------------- Input -------------------- | ||
https://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg | ||
-------------------- Prompt -------------------- | ||
What is in the image? | ||
-------------------- Output -------------------- | ||
The image showcases a young child holding a small white teddy bear. The teddy bear has a pink ribbon around its neck, and the child seems to be showing it off with a smile. Behind the child, there's a stone wall with red flowers, adding a touch of color to the scene. | ||
``` | ||
|
||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): | ||
|
||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a> |
175 changes: 175 additions & 0 deletions
175
python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V/generate.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
|
||
from typing import List, Tuple, Optional, Union | ||
import math | ||
import timm | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround | ||
def resample_abs_pos_embed( | ||
posemb: torch.Tensor, | ||
new_size: List[int], | ||
old_size: Optional[List[int]] = None, | ||
num_prefix_tokens: int = 1, | ||
interpolation: str = 'bicubic', | ||
antialias: bool = True, | ||
verbose: bool = False, | ||
): | ||
# sort out sizes, assume square if old size not provided | ||
num_pos_tokens = posemb.shape[1] | ||
num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens | ||
if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]: | ||
return posemb | ||
|
||
if old_size is None: | ||
hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens)) | ||
old_size = hw, hw | ||
|
||
if num_prefix_tokens: | ||
posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:] | ||
else: | ||
posemb_prefix, posemb = None, posemb | ||
|
||
# do the interpolation | ||
embed_dim = posemb.shape[-1] | ||
orig_dtype = posemb.dtype | ||
posemb = posemb.float() # interpolate needs float32 | ||
posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2) | ||
#posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) | ||
posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device) | ||
posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim) | ||
posemb = posemb.to(orig_dtype) | ||
|
||
# add back extra (class, etc) prefix tokens | ||
if posemb_prefix is not None: | ||
posemb = torch.cat([posemb_prefix, posemb], dim=1) | ||
|
||
if not torch.jit.is_scripting() and verbose: | ||
_logger.info(f'Resized position embedding: {old_size} to {new_size}.') | ||
|
||
return posemb | ||
|
||
|
||
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: | ||
if self.pos_embed is None: | ||
return x.view(x.shape[0], -1, x.shape[-1]) | ||
|
||
if self.dynamic_img_size: | ||
B, H, W, C = x.shape | ||
pos_embed = resample_abs_pos_embed( | ||
self.pos_embed, | ||
(H, W), | ||
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, | ||
) | ||
x = x.view(B, -1, C) | ||
else: | ||
pos_embed = self.pos_embed | ||
|
||
to_cat = [] | ||
if self.cls_token is not None: | ||
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) | ||
if self.reg_token is not None: | ||
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) | ||
|
||
if self.no_embed_class: | ||
# deit-3, updated JAX (big vision) | ||
# position embedding does not overlap with class token, add then concat | ||
x = x + pos_embed | ||
if to_cat: | ||
x = torch.cat(to_cat + [x], dim=1) | ||
else: | ||
# original timm, JAX, and deit vit impl | ||
# pos_embed has entry for class token, concat then add | ||
if to_cat: | ||
x = torch.cat(to_cat + [x], dim=1) | ||
x = x + pos_embed | ||
|
||
return self.pos_drop(x) | ||
|
||
|
||
setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed) | ||
|
||
import os | ||
import time | ||
import argparse | ||
import requests | ||
from PIL import Image | ||
from ipex_llm.transformers import AutoModel | ||
from transformers import AutoTokenizer | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V", | ||
help='The huggingface repo id for the openbmb/MiniCPM-V model to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--image-url-or-path', type=str, | ||
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', | ||
help='The URL or path to the image to infer') | ||
parser.add_argument('--prompt', type=str, default="What is in the image?", | ||
help='Prompt to infer') | ||
parser.add_argument('--n-predict', type=int, default=32, | ||
help='Max tokens to predict') | ||
|
||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
image_path = args.image_url_or_path | ||
|
||
# Load model in 4 bit, | ||
# which convert the relevant layers in the model into INT4 format | ||
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. | ||
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. | ||
model = AutoModel.from_pretrained(model_path, | ||
load_in_4bit=True, | ||
optimize_model=False, | ||
trust_remote_code=True, | ||
modules_to_not_convert=["vpm", "resampler"], | ||
use_cache=True) | ||
model = model.float().to(device='xpu') | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, | ||
trust_remote_code=True) | ||
model.eval() | ||
|
||
query = args.prompt | ||
if os.path.exists(image_path): | ||
image = Image.open(image_path).convert('RGB') | ||
else: | ||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') | ||
|
||
# Generate predicted tokens | ||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V/blob/main/README.md | ||
msgs = [{'role': 'user', 'content': args.prompt}] | ||
st = time.time() | ||
res, context, _ = model.chat( | ||
image=image, | ||
msgs=msgs, | ||
context=None, | ||
tokenizer=tokenizer, | ||
sampling=True, | ||
temperature=0.7 | ||
) | ||
end = time.time() | ||
print(f'Inference time: {end-st} s') | ||
print('-'*20, 'Input', '-'*20) | ||
print(image_path) | ||
print('-'*20, 'Prompt', '-'*20) | ||
print(args.prompt) | ||
output_str = res | ||
print('-'*20, 'Output', '-'*20) | ||
print(output_str) |