Skip to content

Commit

Permalink
Add example: MiniCPM-V (#11570)
Browse files Browse the repository at this point in the history
  • Loading branch information
ch1y0q authored Jul 15, 2024
1 parent 06745e5 commit 50cf563
Show file tree
Hide file tree
Showing 3 changed files with 311 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HuggingFace/LLM/cohere) |
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
| MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |

## Get Support
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
Expand Down
135 changes: 135 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
# MiniCPM-V
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-V](https://huggingface.co/openbmb/MiniCPM-V) as a reference MiniCPM-V model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `chat()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install timm
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install timm
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is in the image?'
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V (e.g. `openbmb/MiniCPM-V`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### Sample Output

#### [openbmb/MiniCPM-V](https://huggingface.co/openbmb/MiniCPM-V)

```log
Inference time: xxxx s
-------------------- Input --------------------
https://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
What is in the image?
-------------------- Output --------------------
The image showcases a young child holding a small white teddy bear. The teddy bear has a pink ribbon around its neck, and the child seems to be showing it off with a smile. Behind the child, there's a stone wall with red flowers, adding a touch of color to the scene.
```

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
175 changes: 175 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


from typing import List, Tuple, Optional, Union
import math
import timm
import torch
import torch.nn.functional as F

# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround
def resample_abs_pos_embed(
posemb: torch.Tensor,
new_size: List[int],
old_size: Optional[List[int]] = None,
num_prefix_tokens: int = 1,
interpolation: str = 'bicubic',
antialias: bool = True,
verbose: bool = False,
):
# sort out sizes, assume square if old size not provided
num_pos_tokens = posemb.shape[1]
num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens
if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]:
return posemb

if old_size is None:
hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens))
old_size = hw, hw

if num_prefix_tokens:
posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
else:
posemb_prefix, posemb = None, posemb

# do the interpolation
embed_dim = posemb.shape[-1]
orig_dtype = posemb.dtype
posemb = posemb.float() # interpolate needs float32
posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
#posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device)
posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim)
posemb = posemb.to(orig_dtype)

# add back extra (class, etc) prefix tokens
if posemb_prefix is not None:
posemb = torch.cat([posemb_prefix, posemb], dim=1)

if not torch.jit.is_scripting() and verbose:
_logger.info(f'Resized position embedding: {old_size} to {new_size}.')

return posemb


def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
if self.pos_embed is None:
return x.view(x.shape[0], -1, x.shape[-1])

if self.dynamic_img_size:
B, H, W, C = x.shape
pos_embed = resample_abs_pos_embed(
self.pos_embed,
(H, W),
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
)
x = x.view(B, -1, C)
else:
pos_embed = self.pos_embed

to_cat = []
if self.cls_token is not None:
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
if self.reg_token is not None:
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))

if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + pos_embed
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
x = x + pos_embed

return self.pos_drop(x)


setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed)

import os
import time
import argparse
import requests
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V",
help='The huggingface repo id for the openbmb/MiniCPM-V model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True,
modules_to_not_convert=["vpm", "resampler"],
use_cache=True)
model = model.float().to(device='xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()

query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')

# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}]
st = time.time()
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=True,
temperature=0.7
)
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
output_str = res
print('-'*20, 'Output', '-'*20)
print(output_str)

0 comments on commit 50cf563

Please sign in to comment.