Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs change examples to notebooks #26

Merged
merged 3 commits into from
Apr 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
221 changes: 221 additions & 0 deletions examples/classification-regression/mnist_loading_saved_model.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MNIST Loading Saved Model"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:21.706906Z",
"start_time": "2024-04-21T12:52:18.726598200Z"
}
},
"outputs": [],
"source": [
"from tensorflow.keras.datasets import mnist # Dataset for testing\n",
"\n",
"from neuralnetlib.model import Model\n",
"from neuralnetlib.preprocessing import one_hot_encode\n",
"from neuralnetlib.utils import train_test_split\n",
"from neuralnetlib.metrics import accuracy_score, confusion_matrix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Loading the MNIST dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:21.915810200Z",
"start_time": "2024-04-21T12:52:21.706906Z"
}
},
"outputs": [],
"source": [
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Preprocessing"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:22.072282500Z",
"start_time": "2024-04-21T12:52:21.916810900Z"
}
},
"outputs": [],
"source": [
"x_train = x_train.reshape(-1, 28 * 28) / 255.0\n",
"x_test = x_test.reshape(-1, 28 * 28) / 255.0\n",
"y_train = one_hot_encode(y_train, num_classes=10)\n",
"y_test = one_hot_encode(y_test, num_classes=10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Split the training data into training and validation sets"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:22.233389700Z",
"start_time": "2024-04-21T12:52:22.073284800Z"
}
},
"outputs": [],
"source": [
"_, x_val, _, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Load the model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:22.258467800Z",
"start_time": "2024-04-21T12:52:22.234388100Z"
}
},
"outputs": [],
"source": [
"model = Model.load('my_mnist_model.npz')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Predict and evaluate on the validation set"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:22.323518700Z",
"start_time": "2024-04-21T12:52:22.257467100Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation Accuracy: 0.899\n"
]
}
],
"source": [
"y_pred_val = model.predict(x_val)\n",
"accuracy_val = accuracy_score(y_pred_val, y_val)\n",
"print(f'Validation Accuracy: {accuracy_val}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Optionally, you can still evaluate on the test set"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-21T12:52:22.393768500Z",
"start_time": "2024-04-21T12:52:22.318518600Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test Accuracy: 0.8863\n",
"Confusion Matrix:\n",
"[[ 937 0 0 1 11 7 2 18 1 3]\n",
" [ 0 1097 3 4 0 3 2 4 19 3]\n",
" [ 13 9 858 36 26 1 23 38 16 12]\n",
" [ 8 6 18 899 2 33 2 16 12 14]\n",
" [ 1 0 1 0 944 0 7 2 1 26]\n",
" [ 19 0 0 82 30 701 12 5 23 20]\n",
" [ 18 2 0 0 70 15 849 1 2 1]\n",
" [ 0 9 10 5 15 0 0 945 4 40]\n",
" [ 6 22 3 3 37 26 9 2 803 63]\n",
" [ 3 2 1 11 137 2 0 15 8 830]]\n"
]
}
],
"source": [
"y_pred_test = model.predict(x_test)\n",
"accuracy_test = accuracy_score(y_pred_test, y_test)\n",
"print(f'Test Accuracy: {accuracy_test}')\n",
"print(f'Confusion Matrix:\\n{confusion_matrix(y_pred_test, y_test)}')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
38 changes: 0 additions & 38 deletions examples/classification-regression/mnist_loading_saved_model.py

This file was deleted.

Loading
Loading