Skip to content

BorealTC: Deep Learning for Proprioceptive-Based Terrain Classification in a Boreal Setting

License

Notifications You must be signed in to change notification settings

norlab-ulaval/BorealTC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Proprioception Is All You Need: Terrain Classification for Boreal Forests

DOI

Husky

Proprioception Is All You Need: Terrain Classification for Boreal Forests
Damien LaRocque, William Guimont-Martin, David-Alexandre Duclos, Philippe Giguère, Francois Pomerleau
Paper: https://arxiv.org/abs/2403.16877

This repo contains the source code and the datasets used in our paper Proprioception Is All You Need: Terrain Classification for Boreal Forests that was submitted to the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024).

Source Code

Most functions are available in the utils directory :

Installation

We recommend installing the dependencies of the repo in a virtual environment. Two dependencies, mamba-ssm and causal-conv1d require a NVIDIA GPU.

python3.10 -m venv .venv
. .venv/bin/activate
pip install -r requirements.txt

We also provide a Dockerfile and a DockerfileGPU to build a Docker image with all the dependencies.

# Build the Docker image
docker build -t borealtc-gpu -f DockerfileGPU .

# Run the Docker image
docker run --gpus all -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES --rm --ipc host \
	  --mount type=bind,source=.,target=/code/ \
	  --mount type=bind,source=/dev/shm,target=/dev/shm \
	  borealtc-gpu python3 main.py

Dataset

The data directory contains two different datasets:

  • the BorealTC dataset, our publicly available dataset
  • the Vulpi dataset, from the 2021 paper of Vulpi et al. This dataset is originally sourced from their repository Ph0bi0/T_DEEP. The original data is available in the form of .mat files. We converted their data in *.csv files to work in Python.

Each experiment is provided in two files imu_XX.csv and pro_XX.csv, for the IMU and the wheel service data, respectively. Both datasets are organized as the following :

data
├── borealtc
│   ├── CLASS1
│   │   ├── imu_00.csv
│   │   ├── imu_01.csv
│   │   ├── ...
│   │   ├── pro_00.csv
│   │   ├── pro_01.csv
│   │   └── ...
│   └── CLASS2
│       ├── imu_00.csv
│       ├── imu_01.csv
│       ├── ...
│       ├── pro_00.csv
│       ├── pro_01.csv
│       └── ...
└── vulpi
    ├── CLASS1
    │   ├── imu_1.csv
    │   ├── imu_2.csv
    │   ├── ...
    │   ├── pro_1.csv
    │   ├── pro_2.csv
    │   └── ...
    └── CLASS2
        ├── imu_1.csv
        ├── imu_2.csv
        ├── ...
        ├── pro_1.csv
        ├── pro_2.csv
        └── ...

Model hyperparameters and checkpoints

Mamba

Dataset Data Type d_state d_conv expand d_model Norm epsilon Initial LR LR drop factor Reduce LR patience Max epochs Minibatch size Valid patience Gradient threshold Focal loss alpha Focal loss gamma Checkpoint
Vulpi IMU
Wheel service
56
56
3
3
4
4
56
56
5e-3 5e-3 0.33 4 60 64 8 2 0.75 2 mamba_vulpi.ckpt
BorealTC IMU
Wheel service
16
16
4
3
4
6
32
8
6.3e-6 1.5e-3 0.25 4 60 16 8 None 0.75 2.25 mamba_borealtc.ckpt
Combined IMU
Wheel service
16
16
4
3
4
6
32
8
6.3e-6 1.5e-3 0.25 4 60 16 8 None 0.75 2.25 mamba_combined.ckpt

In the above table, d_state, d_conv, expand and d_model are parameters specific to Mamba. During optimization, each data type branch can have separate parameters.

CNN

The CNN model used the same hyperparameters for both datasets and their combination. Here are the hyperparameters used for the CNN model:

Parameter Value
Using Hamming Window True
Initial Learning Rate 5e-3
Learning Rate Scheduler ReduceLROnPlateau
Scheduler LR Factor 0.1
Scheduler Patience 4
Max Epochs 150
Early Stopping Patience 8
Gradient Clipping Value 6

Acknowledgments

We would like to acknowledge Fabio Vulpi, Annalisa Milella, Roberto Marani and Giulio Reina for their paper Recurrent and convolutional neural networks for deep terrain classification by autonomous robots. This repo started as a fork of Ph0bi0/T_DEEP, their repo, which contains the source code and the dataset of their paper.

Citation

If you use the code or data in an academic context, please cite the following work:

@inproceedings{LaRocque2024,
  title     = {{Proprioception Is All You Need: Terrain Classification for Boreal Forests}},
  url       = {http://dx.doi.org/10.1109/IROS58592.2024.10801407},
  doi       = {10.1109/iros58592.2024.10801407},
  booktitle = {2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  publisher = {IEEE},
  author    = {LaRocque,  Damien and Guimont-Martin,  William and Duclos,  David-Alexandre and Giguère,  Philippe and Pomerleau,  Fran\c{c}ois},
  year      = {2024},
  month     = oct,
  pages     = {11686–11693}
}

License

This project is licensed under a MIT license.

About

BorealTC: Deep Learning for Proprioceptive-Based Terrain Classification in a Boreal Setting

Resources

License

Stars

Watchers

Forks