-
Notifications
You must be signed in to change notification settings - Fork 157
encap_frr
Test FRR behaviors with encapsulation scenarios.
- ATE port-1 <------> port-1 DUT
- DUT port-2 <------> port-2 ATE
- DUT port-3 <------> port-3 ATE
- DUT port-4 <------> port-4 ATE
- DUT port-5 <------> port-5 ATE
- DUT port-6 <------> port-6 ATE
- DUT port-7 <------> port-7 ATE
- DUT port-8 <------> port-8 ATE
- Apply the following vrf selection policy to DUT port-1
# DSCP value that will be matched to ENCAP_TE_VRF_A
* dscp_encap_a_1 = 10
* dscp_encap_a_2 = 18
# DSCP value that will be matched to ENCAP_TE_VRF_B
* dscp_encap_b_1 = 20
* dscp_encap_b_2 = 28
# DSCP value that will NOT be matched to any VRF for encapsulation.
* dscp_encap_no_match = 30
# Magic source IP addresses used in VRF selection policy
* ipv4_outer_src_111 = 198.51.100.111
* ipv4_outer_src_222 = 198.51.100.222
# Magic destination MAC address
* magic_mac = 02:00:00:00:00:01`
network-instances {
network-instance {
name: DEFAULT
policy-forwarding {
policies {
policy {
policy-id: "vrf_selection_policy_c"
rules {
rule {
sequence-id: 1
ipv4 {
protocol: 4
dscp-set: [dscp_encap_a_1, dscp_encap_a_2]
source-address: "ipv4_outer_src_222"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_A"
decap-fallback-network-instance: "TE_VRF_222"
}
}
rule {
sequence-id: 2
ipv4 {
protocol: 41
dscp-set: [dscp_encap_a_1, dscp_encap_a_2]
source-address: "ipv4_outer_src_222"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_A"
decap-fallback-network-instance: "TE_VRF_222"
}
}
rule {
sequence-id: 3
ipv4 {
protocol: 4
dscp-set: [dscp_encap_a_1, dscp_encap_a_2]
source-address: "ipv4_outer_src_111"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_A"
decap-fallback-network-instance: "TE_VRF_111"
}
}
rule {
sequence-id: 4
ipv4 {
protocol: 41
dscp-set: [dscp_encap_a_1, dscp_encap_a_2]
source-address: "ipv4_outer_src_111"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_A"
decap-fallback-network-instance: "TE_VRF_111"
}
}
rule {
sequence-id: 5
ipv4 {
protocol: 4
dscp-set: [dscp_encap_b_1, dscp_encap_b_2]
source-address: "ipv4_outer_src_222"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_B"
decap-fallback-network-instance: "TE_VRF_222"
}
}
rule {
sequence-id: 6
ipv4 {
protocol: 41
dscp-set: [dscp_encap_b_1, dscp_encap_b_2]
source-address: "ipv4_outer_src_222"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_B"
decap-fallback-network-instance: "TE_VRF_222"
}
}
rule {
sequence-id: 7
ipv4 {
protocol: 4
dscp-set: [dscp_encap_b_1, dscp_encap_b_2]
source-address: "ipv4_outer_src_111"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_B"
decap-fallback-network-instance: "TE_VRF_111"
}
}
rule {
sequence-id: 8
ipv4 {
protocol: 41
dscp-set: [dscp_encap_b_1, dscp_encap_b_2]
source-address: "ipv4_outer_src_111"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "ENCAP_TE_VRF_B"
decap-fallback-network-instance: "TE_VRF_111"
}
}
rule {
sequence-id: 9
ipv4 {
protocol: 4
source-address: "ipv4_outer_src_222"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "DEFAULT"
decap-fallback-network-instance: "TE_VRF_222"
}
}
rule {
sequence-id: 10
ipv4 {
protocol: 41
source-address: "ipv4_outer_src_222"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "DEFAULT"
decap-fallback-network-instance: "TE_VRF_222"
}
}
rule {
sequence-id: 11
ipv4 {
protocol: 4
source-address: "ipv4_outer_src_111"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "DEFAULT"
decap-fallback-network-instance: "TE_VRF_111"
}
}
rule {
sequence-id: 12
ipv4 {
protocol: 41
source-address: "ipv4_outer_src_111"
}
action {
decap-network-instance: "DECAP_TE_VRF"
post-network-instance: "DEFAULT"
decap-fallback-network-instance: "TE_VRF_111"
}
}
rule {
sequence-id: 13
ipv4 {
dscp-set: [dscp_encap_a_1, dscp_encap_a_2]
}
action {
network-instance: "ENCAP_TE_VRF_A"
}
}
rule {
sequence-id: 14
ipv6 {
dscp-set: [dscp_encap_a_1, dscp_encap_a_2]
}
action {
network-instance: "ENCAP_TE_VRF_A"
}
}
rule {
sequence-id: 15
ipv4 {
dscp-set: [dscp_encap_b_1, dscp_encap_b_2]
}
action {
network-instance: "ENCAP_TE_VRF_B"
}
}
rule {
sequence-id: 16
ipv6 {
dscp-set: [dscp_encap_b_1, dscp_encap_b_2]
}
action {
network-instance: "ENCAP_TE_VRF_B"
}
}
rule {
sequence-id: 17
action {
network-instance: "DEFAULT"
}
}
}
}
}
}
}
}
- Using gRIBI, install the following gRIBI AFTs, and validate the specified behavior.
IPv4Entry {138.0.11.0/24 (ENCAP_TE_VRF_A)} -> NHG#101 (DEFAULT VRF) -> {
{NH#101, DEFAULT VRF, weight:1},
{NH#102, DEFAULT VRF, weight:3},
}
NH#101 -> {
encapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
ip_in_ip {
dst_ip: "203.0.113.1"
src_ip: "ipv4_outer_src_111"
}
network_instance: "TE_VRF_111"
}
NH#102 -> {
encapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
ip_in_ip {
dst_ip: "203.10.113.2"
src_ip: "ipv4_outer_src_111"
}
network_instance: "TE_VRF_111"
}
IPv4Entry {203.0.113.1/32 (TE_VRF_111)} -> NHG#1 (DEFAULT VRF) -> {
{NH#1, DEFAULT VRF, weight:1,ip_address=192.0.2.101},
{NH#2, DEFAULT VRF, weight:3,ip_address=192.0.2.102},
backup_next_hop_group: 1000 // re-encap to 203.0.113.100
}
IPv4Entry {192.0.2.101/32 (DEFAULT VRF)} -> NHG#11 (DEFAULT VRF) -> {
{NH#11, DEFAULT VRF, weight:1,mac_address:magic_mac, interface-ref:dut-port-2-interface},
{NH#12, DEFAULT VRF, weight:3,mac_address:magic_mac, interface-ref:dut-port-3-interface},
}
IPv4Entry {192.0.2.102/32 (DEFAUlT VRF)} -> NHG#12 (DEFAULT VRF) -> {
{NH#13, DEFAULT VRF, weight:2,mac_address:magic_mac, interface-ref:dut-port-4-interface},
}
NHG#1000 (DEFAULT VRF) {
{NH#1000, DEFAULT VRF}
}
NH#1000 -> {
decapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
encapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
ip_in_ip {
dst_ip: "203.0.113.100"
src_ip: "ipv4_outer_src_222"
}
network_instance: "TE_VRF_222"
}
IPv4Entry {203.0.113.100/32 (TE_VRF_222)} -> NHG#2 (DEFAULT VRF) -> {
{NH#3, DEFAULT VRF, weight:1,ip_address=192.0.2.103},
backup_next_hop_group: 2000 // decap and fallback to DEFAULT VRF
}
IPv4Entry {192.0.2.103/32 (DEFAULT VRF)} -> NHG#13 (DEFAULT VRF) -> {
{NH#14, DEFAULT VRF, weight:1,mac_address:magic_mac, interface-ref:dut-port-5-interface},
}
// 203.10.113.2 is the tunnel IP address. Note that the NHG#3 is different than NHG#1.
IPv4Entry {203.10.113.2/32 (TE_VRF_111)} -> NHG#3 (DEFAULT VRF) -> {
{NH#4, DEFAULT VRF, weight:1,ip_address=192.0.2.104},
backup_next_hop_group: 1001 // re-encap to 203.0.113.101
}
IPv4Entry {192.0.2.104/32 (DEFAULT VRF)} -> NHG#14 (DEFAULT VRF) -> {
{NH#15, DEFAULT VRF, weight:1,mac_address:magic_mac, interface-ref:dut-port-6-interface},
}
NHG#1001 (DEFAULT VRF) {
{NH#1001, DEFAULT VRF}
}
NH#1001 -> {
decapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
encapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
ip_in_ip {
dst_ip: "203.0.113.101"
src_ip: "ipv4_outer_src_222"
}
network_instance: "TE_VRF_222"
}
IPv4Entry {203.0.113.101/32 (TE_VRF_222)} -> NHG#4 (DEFAULT VRF) -> {
{NH#5, DEFAULT VRF, weight:1,ip_address=192.0.2.105},
backup_next_hop_group: 2000 // decap and fallback to DEFAULT VRF
}
IPv4Entry {192.0.2.105/32 (DEFAULT VRF)} -> NHG#15 (DEFAULT VRF) -> {
{NH#16, DEFAULT VRF, weight:1,mac_address:magic_mac, interface-ref:dut-port-7-interface},
}
NHG#2000 (DEFAULT VRF) {
{NH#2000, DEFAULT VRF}
}
NH#2000 -> {
decapsulate_header: OPENCONFIGAFTTYPESENCAPSULATIONHEADERTYPE_IPV4
network_instance: "DEFAULT"
}
- Install a BGP route resolved by ISIS in default VRF to route 138.0.11.8 traffic out of DUT port-8.
At the start of each of the following scenarios, ensure:
- all ports are up and baseline is reset as above.
- Send packets to DUT port-1. The outer v4 header has the destination addresses 138.0.11.8.
- Validate that traffic is encapsulated to 203.0.113.1 and 203.0.113.2, and is distributed per the hierarchical weights.
Tests that if the primary NHG for an encap tunnel is unviable, then the traffic for that tunnel is re-encaped into its specified backup tunnel.
- Shutdown DUT port-2, port-3, and port-4.
- Validate that corresponding traffic that was encapped to 203.0.113.1 should now be encapped with 203.0.113.100.
Tests that if the primary NHGs of both the encap tunnel and its backup tunnel are unviable, then the traffic for that tunnel is not encapped. Instead, that fraction of traffic should be forwarded according to the BGP/IS-IS routes in the DEFAULT VRF.
- Shutdown DUT port-2, port-3, port-4 and port-5.
- Validate that corresponding traffic (25% of the total traffic) that was encapped to 203.0.113.1 are no longer encapped, and forwarded per BGP-ISIS routes (in the default VRF) out of DUT port-8.
Tests that if the primary NHGs of both the encap tunnel is unviable, and its backup specifies fallback to routing, then the traffic for that tunnel is not encapped. Instead, that fraction of traffic should be forwarded according to the BGP/IS-IS routes in the DEFAULT VRF.
- Update
NHG#1000
to the following:
NHG#1000 (Default VRF) {
{NH#1000, DEFAULT VRF}
}
NH#1000 -> {
decapsulate_header: OPENCONFIGAFTTYPESDECAPSULATIONHEADERTYPE_IPV4
network_instance: "DEFAULT"
}
- Validate that all traffic is distributed per the hierarchical weights.
- Shutdown DUT port-2, port-3, and port-4.
- Validate that corresponding traffic (25% of the total traffic) that was encapped to 203.0.113.1 are no longer encapped, and forwarded per BGP-ISIS routes (in the default VRF) out of DUT port-8.
Tests that if the primary NHG for all encap tunnels are unviable, then the traffic is re-encaped into the specified backup tunnels. This test ensures that the device does not withdraw this IPv4Entry and sends this traffic to routing.
- Shutdown DUT port-2, port-3, port-4 and port-6.
- Validate that traffic is encapsulated to 203.0.113.100 and 203.0.113.101 per the weights.
Tests that if the primary NHGs of both the encap tunnel and its backup tunnel are unviable for all tunnels in the encap NHG, then the traffic for that cluster prefix is not encapped. Instead, that traffic should be forwarded according to the BGP/IS-IS routes in the DEFAULT VRF. This stresses the double failure handling, and ensures that the fallback to DEFAULT is activated through the backup NHGs of the tunnels instead of withdrawing the IPv4Entry.
- Shutdown DUT port-2, port-3, port-4, port-5, port-6 and port-7.
- Validate that all traffic is no longer encapsulated, and is all egressing out of DUT port-8 per the BGP-ISIS routes in the default VRF.
Tests that if the primary NHGs of both the encap tunnel is unviable, and its backup specifies fallback to routing, for all tunnels in the encap NHG, then the traffic for that cluster prefix is not encapped. Instead, that traffic should be forwarded according to the BGP/IS-IS routes in the DEFAULT VRF. This stresses the double failure handling, and ensures that the fallback to DEFAULT is activated through the backup NHGs of the tunnels instead of withdrawing the IPv4Entry.
- Update
NHG#1000
andNHG#1001
to the following:
NHG#1000 (Default VRF) { {NH#1000, DEFAULT VRF} }
NH#1000 -> {
decapsulate_header: OPENCONFIGAFTTYPESDECAPSULATIONHEADERTYPE_IPV4
network_instance: "DEFAULT"
}
NHG#1001 (Default VRF) { {NH#1001, DEFAULT VRF} }
NH#1001 -> {
decapsulate_header: OPENCONFIGAFTTYPESDECAPSULATIONHEADERTYPE_IPV4
network_instance: "DEFAULT"
}
- Validate that all traffic is distributed per the hierarchical weights.
- Shutdown DUT port-2, port-3, and port-4, and port-6.
- Validate that all traffic is no longer encapsulated, and is all egressing out of DUT port-8 per the BGP-ISIS routes in the default VRF.
Test that if there is no lookup match in the encap VRF, then the traffic should be routed to the DEFAULT VRF for further lookup.
- In
ENCAP_TE_VRF_A
, Add an 0/0 static route pointing to the DEFAULT VRF. - Send traffic with destination address 20.0.0.1, which should produce no
match in
ENCAP_TE_VRF_A
. - Validate that the traffic is routed per the BGP-ISIS routes (in the DEFAULT VR) out of DUT port-8.
- network-instances/network-instance/name
- network-instances/network-instance/policy-forwarding/policies/policy/policy-id
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/sequence-id
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv4/protocol
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv4/dscp-set
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv4/source-address
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv6/protocol
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv6/dscp-set
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv6/source-address
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/action/decap-network-instance
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/action/post-network-instance
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/action/decap-fallback-network-instance
- network-instances/network-instance/name
- network-instances/network-instance/policy-forwarding/policies/policy/policy-id
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/sequence-id
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv4/protocol
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv4/dscp-set
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv4/source-address
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv6/protocol
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv6/dscp-set
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/ipv6/source-address
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/action/decap-network-instance
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/action/post-network-instance
- network-instances/network-instance/policy-forwarding/policies/policy/rules/rule/action/decap-fallback-network-instance
rpcs:
gnmi:
gNMI.Get:
gNMI.Set:
gNMI.Subscribe:
gribi:
gRIBI.Get:
gRIBI.Modify:
gRIBI.Flush:
- vRX
-
Home
- Test Plans
- ACCTZ-1.1: Record Subscribe Full
- ACCTZ-2.1: Record Subscribe Partial
- ACCTZ-3.1: Record Subscribe Non-gRPC
- ACCTZ-4.1: Record History Truncation
- ACCTZ-4.2: Record Payload Truncation
- Authz: General Authz (1-4) tests
- CNTR-1: Basic container lifecycle via
gnoi.Containerz
. - CNTR-2: Container network connectivity tests
- Credentialz-1: Password console login
- Credentialz-2: SSH Password Login Disallowed
- Credentialz-3: Host Certificates
- Credentialz-4: SSH Public Key Authentication
- Credentialz-5: Hiba Authentication
- DP-1.2: QoS policy feature config
- DP-1.3: QoS ECN feature config
- DP-1.4: QoS Interface Output Queue Counters
- DP-1.7: One strict priority queue traffic test
- DP-1.8: Two strict priority queue traffic test
- DP-1.9: WRR traffic test
- DP-1.10: Mixed strict priority and WRR traffic test
- DP-1.11: Bursty traffic test
- DP-1.14: QoS basic test
- DP-1.17: DSCP Transparency with ECN
- DP-2.4: Police traffic on input matching all packets using 1 rate, 2 color marker
- example-0.1: Topology Test
- FP-1.1: Power admin DOWN/UP Test
- gNMI-1.1: cli Origin
- gNMI-1.2: Benchmarking: Full Configuration Replace
- gNMI-1.3: Benchmarking: Drained Configuration Convergence Time
- gNMI-1.4: Telemetry: Inventory
- gNMI-1.5: Telemetry: Port Speed Test
- gNMI-1.8: Configuration Metadata-only Retrieve and Replace
- gNMI-1.9: Get requests
- gNMI-1.10: Telemetry: Basic Check
- gNMI-1.11: Telemetry: Interface Packet Counters
- gNMI-1.12: Mixed OpenConfig/CLI Origin
- gNMI-1.13: Optics Telemetry, Instant, threshold, and miscellaneous static info
- gNMI-1.14: OpenConfig metadata consistency during large config push
- gNMI-1.15: Set Requests
- gNMI-1.16: fabric redundancy test
- gNMI-1.17: Controller Card redundancy test
- gNMI-1.18: gNMI subscribe with sample mode for backplane capacity counters
- gNMI-1.19: ConfigPush after Control Card switchover
- gNMI-1.20: Telemetry: Optics Thresholds
- gNMI-1.21: Integrated Circuit Hardware Resource Utilization Test
- gNMI-1.22: Controller card port attributes
- gNMI-1.27: gNMI Sample Mode Test
- GNMI-2: gnmi_subscriptionlist_test
- gNOI-2.1: Packet-based Link Qualification
- gNOI-3.1: Complete Chassis Reboot
- gNOI-3.2: Per-Component Reboot
- gNOI-3.3: Supervisor Switchover
- gNOI-3.4: Chassis Reboot Status and Reboot Cancellation
- gNOI-4.1: Software Upgrade
- gNOI-5.1: Ping Test
- gNOI-5.2: Traceroute Test
- gNOI-5.3: Copying Debug Files
- gNOI-6.1: Factory Reset
- Health-1.1: Generic Health Check
- Health-1.2: Healthz component status paths
- MGT-1: Management HA solution test
- MTU-1.3: Large IP Packet Transmission
- OC-1.2: Default Address Families
- OC-26.1: Network Time Protocol (NTP)
- P4RT-1.1: Base P4RT Functionality
- P4RT-1.2: P4RT Daemon Failure
- P4RT-2.1: P4RT Election
- P4RT-2.2: P4RT Metadata Validation
- P4RT-3.1: Google Discovery Protocol: PacketIn
- P4RT-3.2: Google Discovery Protocol: PacketOut
- P4RT-3.21: Google Discovery Protocol: PacketOut with LAG
- P4RT-5.1: Traceroute: PacketIn
- P4RT-5.2: Traceroute Packetout
- P4RT-5.3: Traceroute: PacketIn With VRF Selection
- P4RT-6.1: Required Packet I/O rate: Performance
- P4RT-7.1: LLDP: PacketIn
- P4RT-7.2: LLDP: PacketOut
- Replay-1.0: Record/replay presession test
- Replay-1.1: Record/replay diff command trees test
- Replay-1.2: P4RT Replay Test
- RT-1.1: Base BGP Session Parameters
- RT-1.2: BGP Policy & Route Installation
- RT-1.3: BGP Route Propagation
- RT-1.4: BGP Graceful Restart
- RT-1.5: BGP Prefix Limit
- RT-1.7: Local BGP Test
- RT-1.10: BGP Keepalive and HoldTimer Configuration Test
- RT-1.11: BGP remove private AS
- RT-1.12: BGP always compare MED
- RT-1.14: BGP Long-Lived Graceful Restart
- RT-1.19: BGP 2-Byte and 4-Byte ASN support
- RT-1.21: BGP TCP MSS and PMTUD
- RT-1.23: BGP AFI SAFI OC DEFAULTS
- RT-1.24: BGP 2-Byte and 4-Byte ASN support with policy
- RT-1.25: Management network-instance default static route
- RT-1.26: Basic static route support
- RT-1.27: Static route to BGP redistribution
- RT-1.28: BGP to IS-IS redistribution
- RT-1.29: BGP chained import/export policy attachment
- RT-1.30: BGP nested import/export policy attachment
- RT-1.32: BGP policy actions - MED, LocPref, prepend, flow-control
- RT-1.33: BGP Policy with prefix-set matching
- RT-1.34: BGP route-distance configuration
- RT-1.51: BGP multipath ECMP
- RT-1.52: BGP multipath UCMP support with Link Bandwidth Community
- RT-1.53: prefix-list test
- RT-1.54: BGP Override AS-path split-horizon
- RT-1.55: BGP session mode (active/passive)
- RT-2.1: Base IS-IS Process and Adjacencies
- RT-2.2: IS-IS LSP Updates
- RT-2.6: IS-IS Hello-Padding enabled at interface level
- RT-2.7: IS-IS Passive is enabled at interface level
- RT-2.8: IS-IS metric style wide not enabled
- RT-2.9: IS-IS metric style wide enabled
- RT-2.10: IS-IS change LSP lifetime
- RT-2.11: IS-IS Passive is enabled at the area level
- RT-2.12: Static route to IS-IS redistribution
- RT-2.13: Weighted-ECMP for IS-IS
- RT-2.14: IS-IS Drain Test
- RT-2.16: IS-IS Graceful Restart Helper
- RT-2-17: IS-IS Graceful Restart Restarting
- RT-3.1: Policy based VRF selection
- RT-3.2: Multiple <Protocol, DSCP> Rules for VRF Selection
- RT-4.10: AFTs Route Summary
- RT-4.11: AFTs Route Summary
- RT-5.1: Singleton Interface
- RT-5.2: Aggregate Interfaces
- RT-5.3: Aggregate Balancing
- RT-5.4: Aggregate Forwarding Viable
- RT-5.5: Interface hold-time
- RT-5.6: Interface Loopback mode
- RT-5.7: Aggregate Not Viable All
- RT-5.8: IPv6 Link Local
- RT-5.9: Disable IPv6 ND Router Arvetisment
- RT-5.10: IPv6 Link Local generated by SLAAC
- RT-6.1: Core LLDP TLV Population
- RT-7.1: BGP default policies
- RT-7.2: BGP Policy Community Set
- RT-7.3: BGP Policy AS Path Set
- RT-7.4: BGP Policy AS Path Set and Community Set
- RT-7.5: BGP Policy - Match and Set Link Bandwidth Community
- RT-7.8: BGP Policy Match Standard Community and Add Community Import/Export Policy
- RT-7.11: BGP Policy - Import/Export Policy Action Using Multiple Criteria
- RT-14.2: GRIBI Route Test
- SEC-3.1: Authentication
- SFLOW-1: sFlow Configuration and Sampling
- System-1: System testing
- TE-1.1: Static ARP
- TE-1.2: My Station MAC
- TE-2.1: gRIBI IPv4 Entry
- TE-2.2: gRIBI IPv4 Entry With Aggregate Ports
- TE-3.1: Base Hierarchical Route Installation
- TE-3.2: Traffic Balancing According to Weights
- TE-3.3: Hierarchical weight resolution
- TE-3.5: Ordering: ACK Received
- TE-3.6: ACK in the Presence of Other Routes
- TE-3.7: Base Hierarchical NHG Update
- TE-3.31: Hierarchical weight resolution with PBF
- TE-4.1: Base Leader Election
- TE-4.2: Persistence Mode
- TE-5.1: gRIBI Get RPC
- TE-6.1: Route Removal via Flush
- TE-6.2: Route Removal In Non Default VRF
- TE-8.1: DUT Daemon Failure
- TE-8.2: Supervisor Failure
- TE-9.2: MPLS based forwarding Static LSP
- TE-9.3: FIB FAILURE DUE TO HARDWARE RESOURCE EXHAUST
- TE-9: gRIBI MPLS Compliance
- TE-10: gRIBI MPLS Forwarding
- TE-11.1: Backup NHG: Single NH
- TE-11.2: Backup NHG: Multiple NH
- TE-11.3: Backup NHG: Actions
- TE-11.21: Backup NHG: Multiple NH with PBF
- TE-11.31: Backup NHG: Actions with PBF
- TE-13.1: gRIBI route ADD during Failover
- TE-13.2: gRIBI route DELETE during Failover
- TE-14.1: gRIBI Scaling
- TE-14.2: encap and decap scale
- TE-15.1: gRIBI Compliance
- TE-16.1: basic encapsulation tests
- TE-16.2: encapsulation FRR scenarios
- TE-16.3: encapsulation FRR scenarios
- TE-17.1: VRF selection policy driven TE
- TR-6.1: Remote Syslog feature config
- TRANSCEIVER-1 (400ZR_PLUS): Telemetry: 400ZR_PLUS Chromatic Dispersion(CD) telemetry values streaming
- TRANSCEIVER-1: Telemetry: 400ZR Chromatic Dispersion(CD) telemetry values streaming
- TRANSCEIVER-3: Telemetry: 400ZR Optics firmware version streaming
- TRANSCEIVER-4: Telemetry: 400ZR RX input and TX output power telemetry values streaming.
- TRANSCEIVER-5: Configuration: 400ZR channel frequency, output TX launch power and operational mode setting.
- TRANSCEIVER-6: Telemetry: 400ZR Optics performance metrics (pm) streaming.
- TRANSCEIVER-7: Telemetry: 400ZR Optics inventory info streaming
- TRANSCEIVER-8: Telemetry: 400ZR Optics module temperature streaming.
- TRANSCEIVER-9: Telemetry: 400ZR TX laser bias current telemetry values streaming.
- TRANSCEIVER-10 (400ZR_PLUS): Telemetry: 400ZR_PLUS Optics FEC(Forward Error Correction) Uncorrectable Frames Streaming.
- TRANSCEIVER-10: Telemetry: 400ZR Optics FEC(Forward Error Correction) Uncorrectable Frames Streaming.
- TRANSCEIVER-11: Telemetry: 400ZR Optics logical channels provisioning and related telemetry.
- TRANSCEIVER-12: Telemetry: 400ZR Transceiver Supply Voltage streaming.
- TRANSCEIVER-13: Configuration: 400ZR Transceiver Low Power Mode Setting.
- TUN-1.4: Interface based IPv6 GRE Encapsulation
- TUN-1.9: GRE inner packet DSCP
- Test Plans