These are the notebooks and associated files for the i2k 2024 QuPath for Python programmers workshop.
This is a brief introduction to QuBaLab and the QuPath Py4J extension, a new way to quickly link Python and QuPath.
- Download the latest QuPath v0.6.0 release candidate from the github releases page.
- Download the QuPath project for this workshop.
- Unzip the project in the i2k-qupath-for-python-programmers directory
- Create a conda environment (bash):
conda create -n i2k-qupath-python python=3.10
conda activate i2k-qupath-python
- Install the requirements, either by
pip install -r requirements.txt
, orpip install instanseg-torch git+https://github.com/qupath/qubalab.git jupyter ipython leidenalg igraph umap-learn
.
- Open QuPath v0.6.0
- Start a py4j gateway with default parameters
- Open the
i2k-qupath-python-project
in QuPath - Open
HE_Hamamatsu.tiff
in QuPath - Start a jupyter session using the virtual environment from earlier
- Run the
qupath-for-python-programmers.ipynb
notebook - Open
patient_test_2.ome.tiff
in QuPath and select the annotation - Run the
clustering-objects.ipynb
notebook