Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename chunks kwarg to partition_chunks into open_datatree method #37

Merged
merged 6 commits into from
Oct 15, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ to be developed on well-understood MSv2 data.
>>> import xarray_ms
>>> from xarray.backends.api import datatree
>>> dt = open_datatree("/data/L795830_SB001_uv.MS/",
chunks={"time": 2000, "baseline": 1000})
partition_chunks={"time": 2000, "baseline": 1000})
>>> dt
<xarray.DataTree>
Group: /
Expand All @@ -47,7 +47,7 @@ to be developed on well-understood MSv2 data.
│ VISIBILITY (time, baseline, frequency, polarization) complex64 41GB ...
│ WEIGHT (time, baseline, frequency, polarization) float32 20GB ...
│ Attributes:
│ version: 0.0.1
│ version: 4.0.0
│ creation_date: 2024-09-18T10:49:55.133908+00:00
│ data_description_id: 0
└── Group: /DATA_DESC_ID=0,FIELD_ID=0,OBSERVATION_ID=0/ANTENNA
Expand Down
11 changes: 6 additions & 5 deletions doc/source/tutorial.rst
Original file line number Diff line number Diff line change
Expand Up @@ -102,18 +102,19 @@ Per-partition chunking
++++++++++++++++++++++

Different chunking may be desired, especially when applied to
different channelisation and polarisation configurations

different channelisation and polarisation configurations.
In these cases, the ``partition_chunks`` argument can be used
to specify different chunking setups for each partition.

.. ipython:: python

dt = open_datatree(ms, partition_columns=[
"DATA_DESC_ID", "FIELD_ID", "OBSERVATION_ID"],
chunks={
partition_chunks={
(("DATA_DESC_ID", 0),): {"time": 2, "frequency": 4},
(("DATA_DESC_ID", 1),): {"time": 3, "frequency": 2}})

See the ``chunks`` argument of
See the ``partition_chunks`` argument of
:meth:`xarray_ms.backend.msv2.entrypoint.MSv2PartitionEntryPoint.open_datatree`
for more information.

Expand All @@ -138,7 +139,7 @@ this to a zarr_ store.

dt = open_datatree(ms, partition_columns=[
"DATA_DESC_ID", "FIELD_ID", "OBSERVATION_ID"],
chunks={
partition_chunks={
(("DATA_DESC_ID", 0),): {"time": 2, "frequency": 4},
(("DATA_DESC_ID", 1),): {"time": 3, "frequency": 2}})

Expand Down
11 changes: 7 additions & 4 deletions tests/test_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ def test_open_datatree(simmed_ms):

# Works with default dask scheduler
with ExitStack() as stack:
dt = open_datatree(simmed_ms, chunks=chunks)
dt = open_datatree(simmed_ms, partition_chunks=chunks)
for ds in dt.values():
del ds.attrs["creation_date"]
xt.assert_identical(dt, mem_dt)
Expand All @@ -165,7 +165,7 @@ def test_open_datatree(simmed_ms):
with ExitStack() as stack:
cluster = stack.enter_context(LocalCluster(processes=True, n_workers=4))
stack.enter_context(Client(cluster))
dt = open_datatree(simmed_ms, chunks=chunks)
dt = open_datatree(simmed_ms, partition_chunks=chunks)
for ds in dt.values():
del ds.attrs["creation_date"]
xt.assert_identical(dt, mem_dt)
Expand All @@ -186,7 +186,7 @@ def test_open_datatree_chunking(simmed_ms):
and partition-specific chunking"""
dt = open_datatree(
simmed_ms,
chunks={"time": 3, "frequency": 2},
partition_chunks={"time": 3, "frequency": 2},
)

for child in dt.children:
Expand All @@ -210,7 +210,10 @@ def test_open_datatree_chunking(simmed_ms):

dt = open_datatree(
simmed_ms,
chunks={"D=0": {"time": 2, "baseline": 2}, "D=1": {"time": 3, "frequency": 2}},
partition_chunks={
"D=0": {"time": 2, "baseline": 2},
"D=1": {"time": 3, "frequency": 2},
},
)

for child in dt.children:
Expand Down
17 changes: 14 additions & 3 deletions xarray_ms/backend/msv2/entrypoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -298,7 +298,7 @@ def open_datatree(
self,
filename_or_obj: str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore,
*,
chunks: Dict[str, Any] | None = None,
partition_chunks: Dict[str, Any] | None = None,
drop_variables: str | Iterable[str] | None = None,
partition_columns: List[str] | None = None,
auto_corrs: bool = True,
Expand All @@ -311,7 +311,7 @@ def open_datatree(

Args:
filename_or_obj: The path to the MSv2 CASA Measurement Set file.
chunks: Chunk sizes along each dimension,
partition_chunks: Chunk sizes along each dimension,
e.g. :code:`{{"time": 10, "frequency": 16}}`.
Individual partitions can be chunked differently by
partially (or fully) specifying a partition key: e.g.
Expand All @@ -331,6 +331,11 @@ def open_datatree(
"D=0,F=1": {{"time": 20, "frequency": 32}},
}}

.. note:: This argument overrides the reserved ``chunks`` argument
used by xarray to control chunking in Datasets and DataTrees.
It should be used instead of ``chunks`` when different
chunking is desired for different partitions.

drop_variables: Variables to drop from the dataset.
partition_columns: The columns to use for partitioning the Measurement set.
Defaults to :code:`{DEFAULT_PARTITION_COLUMNS}`.
Expand All @@ -355,7 +360,13 @@ def open_datatree(

structure = structure_factory()
datasets = {}
pchunks = promote_chunks(structure, chunks)

if not partition_chunks:
partition_chunks = kwargs.pop("chunks", None)
elif "chunks" in kwargs:
warnings.warn("`partition_chunks` overriding `chunks`")

pchunks = promote_chunks(structure, partition_chunks)

for partition_key in structure:
ds = xarray.open_dataset(
Expand Down
Loading