Skip to content

Commit

Permalink
Adds Spectrahedron isa ConvexSet
Browse files Browse the repository at this point in the history
This adds the minimal functionality to be useful. I will follow-up
with more PRs to fill in the "not implemented yet" blocks as needed.
  • Loading branch information
RussTedrake committed May 2, 2023
1 parent ff288a1 commit 7d3bc5d
Show file tree
Hide file tree
Showing 6 changed files with 377 additions and 0 deletions.
11 changes: 11 additions & 0 deletions bindings/pydrake/geometry/geometry_py_optimization.cc
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
#include "drake/geometry/optimization/iris.h"
#include "drake/geometry/optimization/minkowski_sum.h"
#include "drake/geometry/optimization/point.h"
#include "drake/geometry/optimization/spectrahedron.h"
#include "drake/geometry/optimization/vpolytope.h"

namespace drake {
Expand Down Expand Up @@ -257,6 +258,16 @@ void DefineGeometryOptimization(py::module m) {
py::implicitly_convertible<Point, copyable_unique_ptr<ConvexSet>>();
}

// Spectrahedron
{
const auto& cls_doc = doc.Spectrahedron;
py::class_<Spectrahedron, ConvexSet>(m, "Spectrahedron", cls_doc.doc)
.def(py::init<>(), cls_doc.ctor.doc_0args)
.def(py::init<const solvers::MathematicalProgram&>(), py::arg("prog"),
cls_doc.ctor.doc_1args);
py::implicitly_convertible<Spectrahedron, copyable_unique_ptr<ConvexSet>>();
}

// VPolytope
{
const auto& cls_doc = doc.VPolytope;
Expand Down
9 changes: 9 additions & 0 deletions bindings/pydrake/geometry/test/optimization_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,15 @@ def test_minkowski_sum(self):
self.assertEqual(sum2.num_terms(), 2)
self.assertIsInstance(sum2.term(0), mut.Point)

def test_spectrahedron(self):
s = mut.Spectrahedron()
prog = MathematicalProgram()
X = prog.NewSymmetricContinuousVariables(3)
prog.AddPositiveSemidefiniteConstraint(X)
prog.AddLinearEqualityConstraint(X[0, 0] + X[1, 1] + X[2, 2], 1)
s = mut.Spectrahedron(prog=prog)
self.assertEqual(s.ambient_dimension(), 6)

def test_v_polytope(self):
vertices = np.array([[0.0, 1.0, 2.0], [3.0, 7.0, 5.0]])
vpoly = mut.VPolytope(vertices=vertices)
Expand Down
12 changes: 12 additions & 0 deletions geometry/optimization/BUILD.bazel
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ drake_cc_library(
"intersection.cc",
"minkowski_sum.cc",
"point.cc",
"spectrahedron.cc",
"vpolytope.cc",
],
hdrs = [
Expand All @@ -45,6 +46,7 @@ drake_cc_library(
"intersection.h",
"minkowski_sum.h",
"point.h",
"spectrahedron.h",
"vpolytope.h",
],
interface_deps = [
Expand All @@ -55,6 +57,7 @@ drake_cc_library(
deps = [
"//geometry:read_obj",
"//solvers:choose_best_solver",
"//solvers:get_program_type",
"//solvers:gurobi_solver",
"//solvers:ipopt_solver",
"//solvers:mosek_solver",
Expand Down Expand Up @@ -332,6 +335,15 @@ drake_cc_googletest(
],
)

drake_cc_googletest(
name = "spectrahedron_test",
deps = [
":convex_set",
"//common/test_utilities:expect_throws_message",
"//solvers:solve",
],
)

drake_cc_googletest(
name = "vpolytope_test",
data = ["//geometry:test_obj_files"],
Expand Down
165 changes: 165 additions & 0 deletions geometry/optimization/spectrahedron.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
#include "drake/geometry/optimization/spectrahedron.h"

#include <limits>
#include <memory>

#include <fmt/format.h>

#include "drake/solvers/get_program_type.h"

namespace drake {
namespace geometry {
namespace optimization {

using Eigen::MatrixXd;
using Eigen::VectorXd;
using solvers::Binding;
using solvers::Constraint;
using solvers::MathematicalProgram;
using solvers::ProgramAttribute;
using solvers::ProgramAttributes;
using solvers::VectorXDecisionVariable;
using symbolic::Variable;

const solvers::ProgramAttributes Spectrahedron::supported_attributes_ = {
ProgramAttribute::kLinearCost, ProgramAttribute::kLinearConstraint,
ProgramAttribute::kLinearEqualityConstraint,
ProgramAttribute::kPositiveSemidefiniteConstraint};

Spectrahedron::Spectrahedron()
: ConvexSet(&ConvexSetCloner<Spectrahedron>, 0) {}

Spectrahedron::Spectrahedron(const MathematicalProgram& prog)
: ConvexSet(&ConvexSetCloner<Spectrahedron>, prog.num_vars()) {
for (const auto& attr : prog.required_capabilities()) {
if (supported_attributes().count(attr) < 1) {
throw std::runtime_error(
fmt::format("Spectrahedron does not support MathematicalPrograms "
"that require ProgramAttribute {}. If that attribute is "
"convex, it might be possible to add that support.",
attr));
}
}
sdp_ = prog.Clone();
// Remove any objective functions.
for (const auto& binding : sdp_->GetAllCosts()) {
sdp_->RemoveCost(binding);
}
}

Spectrahedron::~Spectrahedron() = default;

bool Spectrahedron::DoIsBounded() const {
throw std::runtime_error(
"Spectrahedron::IsBounded() is not implemented yet.");
}

bool Spectrahedron::DoPointInSet(const Eigen::Ref<const VectorXd>& x,
double tol) const {
return sdp_->CheckSatisfied(sdp_->GetAllConstraints(), x, tol);
}

void Spectrahedron::DoAddPointInSetConstraints(
MathematicalProgram* prog,
const Eigen::Ref<const VectorXDecisionVariable>& x) const {
DRAKE_DEMAND(x.size() == sdp_->num_vars());
for (const auto& binding : sdp_->GetAllConstraints()) {
prog->AddConstraint(
binding.evaluator(),
x(sdp_->FindDecisionVariableIndices(binding.variables())));
}
}

std::vector<Binding<Constraint>>
Spectrahedron::DoAddPointInNonnegativeScalingConstraints(
MathematicalProgram* prog,
const Eigen::Ref<const VectorXDecisionVariable>& x,
const Variable& t) const {
DRAKE_DEMAND(x.size() == sdp_->num_vars());
std::vector<Binding<Constraint>> constraints;
const double kInf = std::numeric_limits<double>::infinity();

// TODO(russt): Support SparseMatrix constraints.
for (const auto& binding : sdp_->bounding_box_constraints()) {
// t*lb ≤ x ≤ t*ub, implemented as
// [I,-lb]*[x;t] ≥ 0, [I,-ub]*[x;t] ≤ 0.
VectorXDecisionVariable vars(binding.evaluator()->num_vars()+1);
vars << x(sdp_->FindDecisionVariableIndices(binding.variables())), t;
MatrixXd Ab = MatrixXd::Identity(binding.evaluator()->num_constraints(),
binding.evaluator()->num_vars() + 1);
// TODO(russt): Handle individual elements that are infinite.
if (binding.evaluator()->lower_bound().array().isFinite().any()) {
Ab.rightCols<1>() = -binding.evaluator()->lower_bound();
prog->AddLinearConstraint(Ab, 0, kInf, vars);
}
if (binding.evaluator()->upper_bound().array().isFinite().any()) {
Ab.rightCols<1>() = -binding.evaluator()->upper_bound();
prog->AddLinearConstraint(Ab, -kInf, 0, vars);
}
}
for (const auto& binding : sdp_->linear_equality_constraints()) {
// Ax = t*b, implemented as
// [A,-lb]*[x;t] == 0.
VectorXDecisionVariable vars(binding.evaluator()->num_vars()+1);
vars << x(sdp_->FindDecisionVariableIndices(binding.variables())), t;
MatrixXd Ab(binding.evaluator()->num_constraints(),
binding.evaluator()->num_vars() + 1);
Ab.leftCols(binding.evaluator()->num_vars()) =
binding.evaluator()->GetDenseA();
Ab.rightCols<1>() = -binding.evaluator()->lower_bound();
prog->AddLinearConstraint(Ab, 0, 0, vars);
}
for (const auto& binding : sdp_->linear_constraints()) {
// t*lb <= Ax = t*ub, implemented as
// [A,-lb]*[x;t] ≥ 0, [A,-ub]*[x;t] ≤ 0.
VectorXDecisionVariable vars(binding.evaluator()->num_vars()+1);
vars << x(sdp_->FindDecisionVariableIndices(binding.variables())), t;
MatrixXd Ab(binding.evaluator()->num_constraints(),
binding.evaluator()->num_vars() + 1);
Ab.leftCols(binding.evaluator()->num_vars()) =
binding.evaluator()->GetDenseA();
if (binding.evaluator()->lower_bound().array().isFinite().any()) {
Ab.rightCols<1>() = -binding.evaluator()->lower_bound();
prog->AddLinearConstraint(Ab, 0, kInf, vars);
}
if (binding.evaluator()->upper_bound().array().isFinite().any()) {
Ab.rightCols<1>() = -binding.evaluator()->upper_bound();
prog->AddLinearConstraint(Ab, -kInf, 0, vars);
}
}
for (const auto& binding : sdp_->positive_semidefinite_constraints()) {
// These constraints get added without modification -- a non-negative
// scaling of the PSD cone is just the PSD cone.
constraints.emplace_back(prog->AddConstraint(
binding.evaluator(),
x(sdp_->FindDecisionVariableIndices(binding.variables()))
.reshaped(binding.evaluator()->matrix_rows(),
binding.evaluator()->matrix_rows())));
}
return constraints;
}

std::vector<Binding<Constraint>>
Spectrahedron::DoAddPointInNonnegativeScalingConstraints(
MathematicalProgram* prog, const Eigen::Ref<const MatrixXd>& A,
const Eigen::Ref<const VectorXd>& b, const Eigen::Ref<const VectorXd>& c,
double d, const Eigen::Ref<const VectorXDecisionVariable>& x,
const Eigen::Ref<const VectorXDecisionVariable>& t) const {
unused(prog, A, b, c, d, x, t);
throw std::runtime_error(
"Spectrahedron::PointInNonnegativeScalingConstraints() is not "
"implemented yet for the case where A, b, c, and d are passed in as "
"arguments.");
}

std::pair<std::unique_ptr<Shape>, math::RigidTransformd>
Spectrahedron::DoToShapeWithPose() const {
// I could potentially visualize the 2x2 case in three dimensions (as a mesh
// if nothing else).
throw std::runtime_error(
"ToShapeWithPose is not supported by Spectrahedron.");
}

} // namespace optimization
} // namespace geometry
} // namespace drake
80 changes: 80 additions & 0 deletions geometry/optimization/spectrahedron.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
#pragma once

#include <memory>
#include <optional>
#include <utility>
#include <vector>

#include "drake/geometry/optimization/convex_set.h"
#include "drake/solvers/mathematical_program.h"

namespace drake {
namespace geometry {
namespace optimization {

/** Implements a spectrahedron (the feasible set of a semidefinite program).
The ambient dimension of the set is N(N+1)/2; the number of variables required
to describe the N-by-N semidefinite matrix.
@ingroup geometry_optimization
*/
class Spectrahedron final : public ConvexSet {
public:
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(Spectrahedron)

/** Default constructor (which constructs the empty set). */
Spectrahedron();

/** Constructs the spectrahedron from a MathematicalProgram.
@throws std::exception if @p prog.required_capabilities() is not a subset of
supported_attributes(). */
explicit Spectrahedron(const solvers::MathematicalProgram& prog);

~Spectrahedron() final;

/** Returns the list of solvers::ProgramAttributes supported by this class. */
static const solvers::ProgramAttributes& supported_attributes() {
return supported_attributes_;
}

// TODO(russt): Add PointInSet(MatrixXd X, double tol) overload, which will
// only work in the case where the ambient_dimension is ONLY symmetric
// matrices.

private:
bool DoIsBounded() const final;

bool DoPointInSet(const Eigen::Ref<const Eigen::VectorXd>& x,
double tol) const final;

void DoAddPointInSetConstraints(
solvers::MathematicalProgram* prog,
const Eigen::Ref<const solvers::VectorXDecisionVariable>& vars)
const final;

std::vector<solvers::Binding<solvers::Constraint>>
DoAddPointInNonnegativeScalingConstraints(
solvers::MathematicalProgram* prog,
const Eigen::Ref<const solvers::VectorXDecisionVariable>& x,
const symbolic::Variable& t) const final;

std::vector<solvers::Binding<solvers::Constraint>>
DoAddPointInNonnegativeScalingConstraints(
solvers::MathematicalProgram* prog,
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::VectorXd>& b,
const Eigen::Ref<const Eigen::VectorXd>& c, double d,
const Eigen::Ref<const solvers::VectorXDecisionVariable>& x,
const Eigen::Ref<const solvers::VectorXDecisionVariable>& t) const final;

std::pair<std::unique_ptr<Shape>, math::RigidTransformd> DoToShapeWithPose()
const final;

copyable_unique_ptr<solvers::MathematicalProgram> sdp_{};

static const solvers::ProgramAttributes supported_attributes_;
};

} // namespace optimization
} // namespace geometry
} // namespace drake
Loading

0 comments on commit 7d3bc5d

Please sign in to comment.