Skip to content

Commit

Permalink
Implements ExpressionCost
Browse files Browse the repository at this point in the history
Most importantly, now AddCost(Expression) will succeed, even if it is
passed in an Expression that is non-Polynomial.

Resolves #17897.
  • Loading branch information
RussTedrake committed May 16, 2023
1 parent b081fce commit e339f52
Show file tree
Hide file tree
Showing 8 changed files with 155 additions and 20 deletions.
4 changes: 1 addition & 3 deletions bindings/pydrake/solvers/solvers_py_mathematicalprogram.cc
Original file line number Diff line number Diff line change
Expand Up @@ -822,9 +822,7 @@ void BindMathematicalProgram(py::module m) {
.def("AddCost",
static_cast<Binding<Cost> (MathematicalProgram::*)(
const Expression&)>(&MathematicalProgram::AddCost),
// N.B. There is no corresponding C++ method, so the docstring here
// is a literal, not a reference to documentation_pybind.h
"Adds a cost expression.")
py::arg("e"), doc.MathematicalProgram.AddCost.doc_1args_e)
.def(
"AddCost",
[](MathematicalProgram* self, const std::shared_ptr<Cost>& obj,
Expand Down
2 changes: 2 additions & 0 deletions solvers/BUILD.bazel
Original file line number Diff line number Diff line change
Expand Up @@ -203,9 +203,11 @@ drake_cc_library(
srcs = ["cost.cc"],
hdrs = ["cost.h"],
interface_deps = [
":decision_variable",
":evaluator_base",
],
deps = [
":constraint",
"//math:gradient",
],
)
Expand Down
40 changes: 40 additions & 0 deletions solvers/cost.cc
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

#include "drake/math/autodiff_gradient.h"
#include "drake/math/differentiable_norm.h"
#include "drake/solvers/constraint.h"

using Eigen::MatrixXd;
using Eigen::VectorXd;
Expand Down Expand Up @@ -306,5 +307,44 @@ std::ostream& PerspectiveQuadraticCost::DoDisplay(
return DisplayCost(*this, os, "PerspectiveQuadraticCost", vars);
}

ExpressionCost::ExpressionCost(const symbolic::Expression& e)
: Cost(e.GetVariables().size()),
/* We reuse the Constraint evaluator's implementation. */
evaluator_(std::make_unique<ExpressionConstraint>(
Vector1<symbolic::Expression>{e},
/* The ub, lb are unused but still required. */
Vector1d(0.0), Vector1d(0.0))) {}

const VectorXDecisionVariable& ExpressionCost::vars() const {
return dynamic_cast<const ExpressionConstraint&>(*evaluator_).vars();
}

const symbolic::Expression& ExpressionCost::expression() const {
return dynamic_cast<const ExpressionConstraint&>(*evaluator_)
.expressions()
.coeffRef(0);
}

void ExpressionCost::DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const {
evaluator_->Eval(x, y);
}

void ExpressionCost::DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const {
evaluator_->Eval(x, y);
}

void ExpressionCost::DoEval(
const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const {
evaluator_->Eval(x, y);
}

std::ostream& ExpressionCost::DoDisplay(
std::ostream& os, const VectorX<symbolic::Variable>& vars) const {
return DisplayCost(*this, os, "ExpressionCost", vars);
}

} // namespace solvers
} // namespace drake
44 changes: 44 additions & 0 deletions solvers/cost.h
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,13 @@
#include <memory>
#include <optional>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include <Eigen/SparseCore>

#include "drake/solvers/decision_variable.h"
#include "drake/solvers/evaluator_base.h"

namespace drake {
Expand Down Expand Up @@ -542,6 +544,48 @@ class PolynomialCost : public EvaluatorCost<PolynomialEvaluator> {
}
};

/**
* Impose a generic (potentially nonlinear) cost represented as a symbolic
* Expression. Expression::Evaluate is called on every constraint evaluation.
*
* Uses symbolic::Jacobian to provide the gradients to the AutoDiff method.
*
* @ingroup solver_evaluators
*/
class ExpressionCost : public Cost {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(ExpressionCost)

explicit ExpressionCost(const symbolic::Expression& e);

/**
* @return the list of the variables involved in the vector of expressions,
* in the order that they are expected to be received during DoEval.
* Any Binding that connects this constraint to decision variables should
* pass this list of variables to the Binding.
*/
const VectorXDecisionVariable& vars() const;

/** @return the symbolic expression. */
const symbolic::Expression& expression() const;

protected:
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;

void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;

void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;

std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;

private:
std::unique_ptr<EvaluatorBase> evaluator_;
};

/**
* Converts an input of type @p F to a nonlinear cost.
* @tparam FF The forwarded function type (e.g., `const F&, `F&&`, ...).
Expand Down
6 changes: 2 additions & 4 deletions solvers/create_cost.cc
Original file line number Diff line number Diff line change
Expand Up @@ -97,10 +97,8 @@ Binding<PolynomialCost> ParsePolynomialCost(const symbolic::Expression& e) {

Binding<Cost> ParseCost(const symbolic::Expression& e) {
if (!e.is_polynomial()) {
ostringstream oss;
oss << "Expression " << e << " is not a polynomial. ParseCost does not"
<< " support non-polynomial expression.\n";
throw runtime_error(oss.str());
auto cost = make_shared<ExpressionCost>(e);
return CreateBinding(cost, cost->vars());
}
const symbolic::Polynomial poly{e};
const int total_degree{poly.TotalDegree()};
Expand Down
9 changes: 0 additions & 9 deletions solvers/mathematical_program.h
Original file line number Diff line number Diff line change
Expand Up @@ -1040,8 +1040,6 @@ class MathematicalProgram {

/**
* Add a quadratic cost term of the form 0.5*x'*Q*x + b'*x + c.
* Notice that in the optimization program, the constant term `c` in the cost
* is ignored.
* @param e A quadratic symbolic expression.
* @param is_convex Whether the cost is already known to be convex. If
* is_convex=nullopt (the default), then Drake will determine if `e` is a
Expand Down Expand Up @@ -1195,14 +1193,7 @@ class MathematicalProgram {

/**
* Adds a cost in the symbolic form.
* Note that the constant part of the cost is ignored. So if you set
* `e = x + 2`, then only the cost on `x` is added, the constant term 2 is
* ignored.
* @param e The linear or quadratic expression of the cost.
* @pre `e` is linear or `e` is quadratic. Otherwise throws a runtime error.
* @return The newly created cost, together with the bound variables.
*
* @exclude_from_pydrake_mkdoc{Not bound in pydrake.}
*/
Binding<Cost> AddCost(const symbolic::Expression& e);

Expand Down
39 changes: 39 additions & 0 deletions solvers/test/cost_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -733,6 +733,45 @@ GTEST_TEST(EvaluatorCost, Eval) {
EXPECT_NEAR(y2(0), a.dot(evaluator2_y) + b, 1E-12);
}

GTEST_TEST(ExpressionCost, Basic) {
using std::sin;
using std::cos;
Variable x("x"), y("y");
symbolic::Expression e = x * sin(y);
ExpressionCost cost(e);

EXPECT_TRUE(e.EqualTo(cost.expression()));
EXPECT_EQ(cost.vars().size(), 2);
EXPECT_EQ(cost.vars()[0], x);
EXPECT_EQ(cost.vars()[1], y);

EXPECT_EQ(cost.num_vars(), 2);
Vector2d x_d(1.2, 3.5);
VectorXd y_d;
Vector1d y_expected(1.2 * sin(3.5));
cost.Eval(x_d, &y_d);
EXPECT_TRUE(CompareMatrices(y_d, y_expected));

AutoDiffVecXd x_ad = math::InitializeAutoDiff(x_d);
AutoDiffVecXd y_ad;
RowVector2d y_deriv_expected(sin(3.5), 1.2*cos(3.5));
cost.Eval(x_ad, &y_ad);
EXPECT_TRUE(CompareMatrices(math::ExtractValue(y_ad), y_expected));
EXPECT_TRUE(CompareMatrices(math::ExtractGradient(y_ad), y_deriv_expected));

Variable x_test("x"), y_test("y");
Vector2<Variable> x_e(x_test, y_test);
VectorX<Expression> y_e;
Expression e_expected = x_test * sin(y_test);
cost.Eval(x_e, &y_e);
EXPECT_EQ(y_e.size(), 1);
EXPECT_TRUE(y_e[0].EqualTo(e_expected));

std::ostringstream os;
cost.Display(os, x_e);
EXPECT_EQ(fmt::format("{}", os.str()), "ExpressionCost (x * sin(y))");
}

} // namespace
} // namespace solvers
} // namespace drake
31 changes: 27 additions & 4 deletions solvers/test/mathematical_program_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2798,7 +2798,7 @@ void CheckAddedSymbolicQuadraticCostUserFun(const MathematicalProgram& prog,
EXPECT_EQ(binding.variables(), prog.quadratic_costs().back().variables());

auto cnstr = prog.quadratic_costs().back().evaluator();
// Check the added cost is 0.5 * x' * Q * x + b' * x
// Check the added cost is 0.5 * x' * Q * x + b' * x + c
const auto& x_bound = binding.variables();
const Expression e_added = 0.5 * x_bound.dot(cnstr->Q() * x_bound) +
cnstr->b().dot(x_bound) + cnstr->c();
Expand Down Expand Up @@ -2831,6 +2831,11 @@ GTEST_TEST(TestMathematicalProgram, AddSymbolicQuadraticCost) {
Expression e2 = x.transpose() * x + 1;
CheckAddedSymbolicQuadraticCost(&prog, e2, true);
EXPECT_TRUE(prog.quadratic_costs().back().evaluator()->is_convex());
// Confirm that const terms are respected.
auto b = prog.AddQuadraticCost(e2);
VectorXd y(1);
b.evaluator()->Eval(Vector3d::Zero(), &y);
EXPECT_EQ(y[0], 1);

// Identity diagonal term.
Expression e3 = x(0) * x(0) + x(1) * x(1) + 2;
Expand Down Expand Up @@ -3135,9 +3140,6 @@ GTEST_TEST(TestMathematicalProgram, TestAddCostThrowError) {
MathematicalProgram prog;
auto x = prog.NewContinuousVariables<2>();

// Add a non-polynomial cost.
EXPECT_THROW(prog.AddCost(sin(x(0))), runtime_error);

// Add a cost containing variable not included in the mathematical program.
Variable y("y");
DRAKE_EXPECT_THROWS_MESSAGE(prog.AddCost(x(0) + y),
Expand All @@ -3162,6 +3164,27 @@ GTEST_TEST(TestMathematicalProgram, TestAddGenericCost) {
EXPECT_EQ(prog.quadratic_costs().size(), 1);
}

GTEST_TEST(TestMathematicalProgram, TestAddGenericCostExpression) {
MathematicalProgram prog;
Variable x = prog.NewContinuousVariables<1>()[0];
Variable y = prog.NewContinuousVariables<1>()[0];

using std::atan2;
auto b = prog.AddCost(atan2(y, x));
EXPECT_EQ(prog.generic_costs().size(), 1);
Vector2d x_test(0.5, 0.2);
Vector1d y_expected(atan2(0.2, 0.5));
EXPECT_TRUE(CompareMatrices(prog.EvalBinding(b, x_test), y_expected));
}

// Confirm that even constant costs are supported.
GTEST_TEST(TestMathematicalProgram, TestAddCostConstant) {
MathematicalProgram prog;

auto b = prog.AddCost(Expression(0.5));
EXPECT_EQ(prog.linear_costs().size(), 1);
}

GTEST_TEST(TestMathematicalProgram, TestClone) {
MathematicalProgram prog;
auto x = prog.NewContinuousVariables<3>("x");
Expand Down

0 comments on commit e339f52

Please sign in to comment.