-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding python scripts to generate test cases.
- Loading branch information
1 parent
75ea820
commit 5b22af0
Showing
2 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
192 changes: 192 additions & 0 deletions
192
fuse_constraints/test/test_fixed_3d_landmark_constraint.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
import numpy as np | ||
from scipy.spatial.transform import Rotation as R | ||
|
||
# From ROS Calibrator on Logitech C920 (Oscar's) at 640x480 | ||
# D = [0.13281739520782995, -0.17255676937880005, -0.0036963860577237523, -0.00884659526000406, 0.0] | ||
# K = [622.2066360931567, 0.0, 315.6497225093459, 0.0, 623.201615897975, 239.80322845004648, 0.0, 0.0, 1.0] | ||
# R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] | ||
# P = [638.3447875976562, 0.0, 310.2906045722684, 0.0, 0.0, 643.107177734375, 237.80861559081677, 0.0, 0.0, 0.0, 1.0, 0.0] | ||
|
||
class PinholeCameraProjection(): | ||
def __init__(self,): | ||
# Define Size | ||
self.w = 640 | ||
self.h = 480 | ||
|
||
# Calib Parameters | ||
self.fx = 638.34478759765620 | ||
self.fy = 643.10717773437500 | ||
self.cx = 310.29060457226840 | ||
self.cy = 237.80861559081677 | ||
|
||
# Make Matrix | ||
self.K = np.eye(4) | ||
self.K[0,0] = self.fx | ||
self.K[1,1] = self.fy | ||
self.K[0,2] = self.cx | ||
self.K[1,2] = self.cy | ||
|
||
# Define 4x4 Array of 3D points at corners of a square (e.g. ARTag) | ||
self.X = np.zeros((4,4)) | ||
self.X[0,:] = np.array([-1, -1, 0, 1]) | ||
self.X[1,:] = np.array([-1, 1, 0, 1]) | ||
self.X[2,:] = np.array([ 1, -1, 0, 1]) | ||
self.X[3,:] = np.array([ 1, 1, 0, 1]) | ||
# print(self.X) | ||
|
||
# Define 8x4 Array of 3D points (e.g. 2 AR Tags) | ||
self.X2 = np.zeros((8,4)) | ||
scale = 3.0 | ||
lps = (1.0 * scale)/2 | ||
lpg = 0.08 * scale | ||
self.X2[0,:] = np.array([ -lps, -lps, 0, 1]) | ||
self.X2[1,:] = np.array([ -lps, lps, 0, 1]) | ||
self.X2[2,:] = np.array([ lps, -lps, 0, 1]) | ||
self.X2[3,:] = np.array([ lps, lps, 0, 1]) | ||
self.X2[4,:] = np.array([2*lps + lpg, -lps, 0, 1]) | ||
self.X2[5,:] = np.array([2*lps + lpg, lps, 0, 1]) | ||
self.X2[6,:] = np.array([ lps + lpg, -lps, 0, 1]) | ||
self.X2[7,:] = np.array([ lps + lpg, lps, 0, 1]) | ||
print(self.X2) | ||
|
||
# Define T for | ||
self.T = np.eye(4) | ||
self.T[0:3,0:3] = R.from_quat([0, -0.3826834, 0, 0.9238795]).as_matrix() | ||
self.T[2,3] = 10 | ||
print(self.T) | ||
|
||
# Define Camera Position (identity) | ||
self.Xc = np.eye(4) | ||
|
||
def print_points(self, pts2d, pts3d): | ||
print(f"3D:\n{pts3d[:,0:3]}") | ||
print(f"2D:\n{pts2d[:,0:2]}") | ||
|
||
def project_points(self, camPos, pts3d): | ||
x = np.matmul(self.K, np.matmul(camPos, pts3d.transpose())).transpose() | ||
x[:,0]/=x[:,2] | ||
x[:,1]/=x[:,2] | ||
x[:,2]/=x[:,2] | ||
return x | ||
|
||
def plot(self, pts2d, pts3d): | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
fig = plt.figure(figsize=(8, 8)) | ||
ax = fig.add_subplot(1,2,1, projection='3d') | ||
|
||
ax.scatter(pts3d[:,0], pts3d[:,1], pts3d[:,2]) | ||
ax = fig.add_subplot(1,2,2) | ||
|
||
ax.scatter(pts2d[:,0], pts2d[:,1], pts2d[:,2]) | ||
ax.set_xlim([0, self.w]) | ||
ax.set_ylim([0, self.h]) | ||
plt.show() | ||
|
||
def project_poses(self, pts3d): | ||
|
||
Xc = np.eye(4) | ||
for i in range(-2,3,1): | ||
|
||
Xc[0, 3] = i | ||
Xc[1, 3] = i | ||
|
||
if i == 0: | ||
Xc[0:3, 0:3] = R.from_quat([ 0, 0.0871558, 0, 0.9961947 ]).as_matrix() | ||
print(Xc) | ||
|
||
x = self.project_points(Xc, pts3d) | ||
|
||
def Optimization(self): | ||
print("Points for Optimization") | ||
print(f"fx = {self.fx}") | ||
print(f"fy = {self.fy}") | ||
print(f"cx = {self.cx}") | ||
print(f"cy = {self.cy}") | ||
X = np.matmul(self.T, self.X.transpose()).transpose() | ||
x = self.project_points(np.eye(4), X) | ||
self.print_points(x, X) | ||
self.plot(x, X) | ||
|
||
def OptimizationScaledMarker(self): | ||
print("Points for OptimizationScaledMarker") | ||
print(f"fx = {self.fx}") | ||
print(f"fy = {self.fy}") | ||
print(f"cx = {self.cx}") | ||
print(f"cy = {self.cy}") | ||
|
||
# Scale X | ||
s = 0.25 | ||
Y = s * self.X # Scale X | ||
Y[:,3] = 1.0 | ||
|
||
# Define T | ||
self.T = np.eye(4) | ||
self.T[0:3,0:3] = R.from_quat([0, -0.3826834, 0, 0.9238795]).as_matrix() | ||
self.T[2,3] = 10 | ||
|
||
# Apply T | ||
Y = np.matmul(self.T, Y.transpose()).transpose() | ||
|
||
x = self.project_points(np.eye(4), Y) | ||
self.print_points(x, Y) | ||
self.plot(x, Y) | ||
|
||
def OptimizationPoints(self): | ||
print("Points for OptimizationPoints") | ||
print(f"fx = {self.fx}") | ||
print(f"fy = {self.fy}") | ||
print(f"cx = {self.cx}") | ||
print(f"cy = {self.cy}") | ||
|
||
# Define T | ||
self.T = np.eye(4) | ||
self.T[0:3,0:3] = R.from_quat([0, -0.3826834, 0, 0.9238795]).as_matrix() | ||
self.T[2,3] = 10 | ||
|
||
# Apply T | ||
X2 = np.matmul(self.T, self.X2.transpose()).transpose() | ||
|
||
x = self.project_points(np.eye(4), X2) | ||
self.print_points(x, self.X2) | ||
self.plot(x, self.X2) | ||
|
||
def MultiViewOptimization(self): | ||
print("Points for MultiViewOptimization") | ||
print(f"fx = {self.fx}") | ||
print(f"fy = {self.fy}") | ||
print(f"cx = {self.cx}") | ||
print(f"cy = {self.cy}") | ||
|
||
# Define T | ||
self.T = np.eye(4) | ||
self.T[0:3,0:3] = R.from_quat([0, -0.3826834, 0, 0.9238795]).as_matrix() | ||
self.T[2,3] = 10 | ||
|
||
# Apply T | ||
pts3d = np.matmul(self.T, self.X.transpose()).transpose() | ||
print(self.X) | ||
|
||
Xc = np.eye(4) | ||
for i in range(-2,3,1): | ||
|
||
print(f"\n{i+2}: \n") | ||
|
||
Xc[0, 3] = i | ||
Xc[1, 3] = i | ||
|
||
if i == 0: | ||
Xc[0:3, 0:3] = R.from_quat([ 0, 0.0871558, 0, 0.9961947 ]).as_matrix() | ||
|
||
x = self.project_points(Xc, pts3d) | ||
self.print_points(x, pts3d) | ||
self.plot(x, pts3d) | ||
|
||
if __name__ == '__main__': | ||
tests = PinholeCameraProjection() | ||
|
||
tests.Optimization() | ||
tests.OptimizationScaledMarker() | ||
tests.OptimizationPoints() | ||
tests.MultiViewOptimization() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
import numpy as np | ||
|
||
# D = [0.13281739520782995, -0.17255676937880005, -0.0036963860577237523, -0.00884659526000406, 0.0] | ||
# K = [622.2066360931567, 0.0, 315.6497225093459, 0.0, 623.201615897975, 239.80322845004648, 0.0, 0.0, 1.0] | ||
# R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] | ||
# P = [638.3447875976562, 0.0, 310.2906045722684, 0.0, 0.0, 643.107177734375, 237.80861559081677, 0.0, 0.0, 0.0, 1.0, 0.0] | ||
|
||
class PinholeCameraProjection(): | ||
def __init__(self,): | ||
# Define Size | ||
self.w = 640 | ||
self.h = 480 | ||
|
||
# Calib Parameters | ||
self.fx = 638.34478759765620 | ||
self.fy = 643.10717773437500 | ||
self.cx = 310.29060457226840 | ||
self.cy = 237.80861559081677 | ||
|
||
# Make Matrix | ||
self.K = np.eye(4) | ||
self.K[0,0] = self.fx | ||
self.K[1,1] = self.fy | ||
self.K[0,2] = self.cx | ||
self.K[1,2] = self.cy | ||
|
||
# Define 8x4 Array of 3D points at corners of a cube (e.g. ARTag) | ||
self.X = np.zeros((8,4)) | ||
self.X[0,:] = np.array([-1, -1, -1, 1]) | ||
self.X[1,:] = np.array([-1, -1, 1, 1]) | ||
self.X[2,:] = np.array([-1, 1, -1, 1]) | ||
self.X[3,:] = np.array([-1, 1, 1, 1]) | ||
self.X[4,:] = np.array([ 1, -1, -1, 1]) | ||
self.X[5,:] = np.array([ 1, -1, 1, 1]) | ||
self.X[6,:] = np.array([ 1, 1, -1, 1]) | ||
self.X[7,:] = np.array([ 1, 1, 1, 1]) | ||
|
||
# Offset on Z to move in front of camera | ||
self.X[:,2] += 10 | ||
|
||
def print_calib(self): | ||
print(f"fx = {self.fx}") | ||
print(f"fy = {self.fy}") | ||
print(f"cx = {self.cx}") | ||
print(f"cy = {self.cy}") | ||
|
||
def print_points(self, pts2d, pts3d): | ||
print(pts3d[:,0:3]) | ||
print(pts2d[:,0:2]) | ||
|
||
def project_points(self, camPos, pts3d): | ||
x = np.matmul(self.K, np.matmul(camPos, pts3d.transpose())).transpose() | ||
x[:,0]/=x[:,2] | ||
x[:,1]/=x[:,2] | ||
x[:,2]/=x[:,2] | ||
return x | ||
|
||
def plot(self, pts2d, pts3d): | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
fig = plt.figure(figsize=(8, 8)) | ||
ax = fig.add_subplot(1,2,1, projection='3d') | ||
|
||
ax.scatter(pts3d[:,0], pts3d[:,1], pts3d[:,2]) | ||
ax = fig.add_subplot(1,2,2) | ||
|
||
ax.scatter(pts2d[:,0], pts2d[:,1], pts2d[:,2]) | ||
ax.set_xlim([0, self.w]) | ||
ax.set_ylim([0, self.h]) | ||
plt.show() | ||
|
||
def project_and_print(self): | ||
x = self.project_points(np.eye(4), self.X) | ||
self.print_calib() | ||
self.print_points(x, self.X) | ||
self.plot(x, self.X) | ||
|
||
def FuseProjectionOptimization(self): | ||
print("Points for FuseProjectionOptimization") | ||
self.project_and_print() | ||
|
||
def ProjectionOptimization(self): | ||
print("Points for ProjectionOptimization") | ||
self.project_and_print() | ||
|
||
def PerPointProjectionOptimization(self): | ||
print("Points for PerPointProjectionOptimization") | ||
self.project_and_print() | ||
|
||
if __name__ == '__main__': | ||
tests = PinholeCameraProjection() | ||
|
||
# fuseProjectionOptimization Test | ||
tests.FuseProjectionOptimization() | ||
tests.ProjectionOptimization() | ||
tests.PerPointProjectionOptimization() | ||
|