Skip to content

User Behavior Analysis in Practice 3:Order based Filtering Using Binary Search

esProcSPL edited this page Oct 16, 2024 · 1 revision

Target task:

We have a user events table T. Below is its structure and part of its data:

Time UserID EventTypeID EventType
2022/6/1 10:20 1072755 3 Search
2022/6/1 12:12 1078030 2 Browse
2022/6/1 12:36 1005093 5 Submit
2022/6/1 13:21 1048655 1 Login
2022/6/1 14:46 1037824 6 Logout
2022/6/1 15:19 1049626 4 AddtoCart
2022/6/1 16:00 1009296 5 Submit
2022/6/1 16:39 1070713 2 Browse
2022/6/1 17:40 1090884 3 Search

Fields in table T:

Field name Data type Description
Time Datetime Time stamp of an event, accurate to milliseconds
UserID Integer User ID
EventTypeID Integer Event type ID
EventType String Event type name

Computing task:

Find the number of events under each type and that of distinct users who perform that type of event in the specified time period.

The first thing the task involves is to obtain data within a specified time period from huge amount of data.

Techniques involved:

Sort the original table by Time field and save the ordered data. This enables us to use binary search to perform the filtering without the need of traversing all data when trying to retrieve data in a specified time range, and thus can considerably speed up the filtering operation.

Sample code

  1. Dump data from database and store it in a binary file ordered by time.

Stocked data: the data is retrieved from the database, sorted by time and written to a binary file:

A
1 =connect("demo").cursor@x("select * from T order by Time")
2 =file("T.btx").export@b(A1)

A1 Sort table T by time while retrieving data from it.

Newly-increased data: The newly-increased data is identified through time stamp. Each day after 0 o’clock we append the newly-generated data in the past day to a bin file:

A
1 =connect("demo").cursor@x("select * from T where Time>=? && Time<? order by Time",date(now()-1), date(now()))
2 =file("T.btx").export@ba(A1)

A1 Get data generated in the previous day through filtering condition to create a cursor. Data needs to be first sorted by time stamp.

A2 Fetch A1’s data from the cursor and append it to bin file T.btx. As the newly-increased data is identified according to time stamp, the new data is naturally generated later. There’s no need to sort-merge the new data and the old data. Just append the new data to the original file.

  1. Perform fast filtering using binary search and then grouping & aggregation

Suppose we need to summarize data that falls in between 2022-03-15 and 2022-06-16:

A
1 >start=date("2022-03-15","yyyy-MM-dd"),end=date("2022-06-16","yyyy-MM-dd")
2 =file("T.btx").iselect@br(start:end,Time).groups(EventTypeID; EventType, count(1):Num, icount(UserID):iNum)

A2 iselect function reads records whose Time values are within the interval [start,end] from the file ordered by expression Time and return them as a cursor. In this case the time interval is closed. @r option indicates that not all Time values are distinct because there are concurrencies performed by multiple users; @b option enables reading data from a binary file.

The iselect function does not work with the option enabling parallel processing. In a single-task scenario, it is not necessarily that iselect is faster than the parallel-processing-based full traversal when the selected result set is large. In a multi-task scenario, parallel processing is futile (because the multiple CPUs will be fully occupied with handling concurrencies). In that case, the function has a great advantage.

Execution result:

EventTypeID EventType Num iNum
1 Login 4033000 393400
2 Browse 3578901 348791
3 Search 2947931 257539
4 AddtoCart 1845674 175476
5 Submit 867345 83375
6 Logout 4033000 393400
Clone this wiki locally